|                                                                                                              |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | -                |                                                              |                                                                      | REC                                                                                                 | ALIBRATION                                                |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------|--------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|                                                                                                              |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                  |                                                              | 2                                                                    | D                                                                                                   | UE DATE:                                                  |
|                                                                                                              |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                  |                                                              |                                                                      | Janua                                                                                               | ary 24, 201                                               |
|                                                                                                              | Ce                                                                              | rtife                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cate of                 | A                | Cal                                                          | ibra                                                                 | ntion                                                                                               |                                                           |
|                                                                                                              |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Calibration (           | Certificatio     | on Informat                                                  | ion                                                                  |                                                                                                     |                                                           |
| Cal. Date:                                                                                                   | January 24                                                                      | , 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rootsn                  | neter S/N:       | 438320                                                       | Ta:                                                                  | 293                                                                                                 | °К                                                        |
| Operator:                                                                                                    | Jim Tisch                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                  |                                                              | Pa:                                                                  | 756.9                                                                                               | mm Hg                                                     |
| Calibration                                                                                                  | Model #:                                                                        | TE-5025A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Calib                   | rator S/N:       | 3166                                                         | 1995-94                                                              |                                                                                                     | 9                                                         |
|                                                                                                              |                                                                                 | Vol. Init                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vol. Final              | AVol.            | ATime                                                        | AP                                                                   | AH                                                                                                  | 1                                                         |
|                                                                                                              | Run                                                                             | (m3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (m3)                    | (m3)             | (min)                                                        | (mm Hg)                                                              | (in H2O)                                                                                            |                                                           |
|                                                                                                              | 1                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                       | 1                | 1.4430                                                       | 3.2                                                                  | 2 00                                                                                                |                                                           |
|                                                                                                              | 2                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                       | 1                | 1.0270                                                       | 6.4                                                                  | 4.00                                                                                                |                                                           |
|                                                                                                              | 3                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                       | 1                | 0.9220                                                       | 7.9                                                                  | 5.00                                                                                                |                                                           |
|                                                                                                              | 4                                                                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                       | 1                | 0.8780                                                       | 8.7                                                                  | 5.50                                                                                                |                                                           |
|                                                                                                              | 5                                                                               | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                      | 1                | 0.7270                                                       | 12.6                                                                 | 8.00                                                                                                |                                                           |
|                                                                                                              |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D                       | ata Tabula       | tion                                                         |                                                                      |                                                                                                     | ĺ                                                         |
|                                                                                                              | Vstd                                                                            | Qstd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | √∆H( <u>Pa</u><br>Pstd  | )( <u>Tstd</u> ) |                                                              | Qa                                                                   | √∆H(Ta/Pa)                                                                                          |                                                           |
|                                                                                                              | (m3)                                                                            | (x-axis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (y-axi                  | s)               | Va                                                           | (x-axis)                                                             | (v-axis)                                                                                            |                                                           |
|                                                                                                              | 1.0087                                                                          | 0.6990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.423                   | 3                | 0.9958                                                       | 0.6901                                                               | 0.8799                                                                                              |                                                           |
|                                                                                                              | 1.0044                                                                          | 0.9780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.012                   | 9                | 0.9915                                                       | 0.9655                                                               | 1.2443                                                                                              |                                                           |
|                                                                                                              | 1.0024                                                                          | 1.0872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.250                   | 5                | 0.9896                                                       | 1.0733                                                               | 1.3912                                                                                              |                                                           |
|                                                                                                              | 1.0013                                                                          | 1.1404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.360                   | 3                | 0.9885                                                       | 1.1259                                                               | 1.4591                                                                                              |                                                           |
|                                                                                                              | 0.9961                                                                          | 1.3701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.846                   | 7                | 0.9834                                                       | 1.3526                                                               | 1.7598                                                                                              |                                                           |
|                                                                                                              | OCTO                                                                            | m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.122                   | 31               | ~                                                            | m=                                                                   | 1.32895                                                                                             |                                                           |
|                                                                                                              | USID                                                                            | D=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.060                  | 16               | QA                                                           | b=                                                                   | -0.03719                                                                                            |                                                           |
|                                                                                                              |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.999                   | 39               |                                                              | r=                                                                   | 0.99999                                                                                             |                                                           |
|                                                                                                              | Vetdal                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10-to d VIT-to d FT-    | Calculation      | 1S                                                           |                                                                      | 1.10.1                                                                                              |                                                           |
|                                                                                                              | Ostd=                                                                           | Vetd/ATime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /Pstu)(Tstu/Ta          | ,                | Va=                                                          | ΔVOI((Pa-ΔP                                                          | )/Pa)                                                                                               |                                                           |
|                                                                                                              | - quid-                                                                         | v stu/ Arnine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | For subseque            | ent flow rat     | e calculation                                                | va/Arime                                                             |                                                                                                     |                                                           |
|                                                                                                              | Qstd=                                                                           | 1/m (( \[ \[ \[ \[ \[ \[ \[ \[ \[ \[ \[ \[ \[                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pa (Tstd<br>Pstd (Ta )  | )-b)             | Qa=                                                          | 1/m ((√∆H                                                            | (Ta/Pa))-b)                                                                                         |                                                           |
|                                                                                                              | Standard                                                                        | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                       | <u> </u>         |                                                              | <u></u>                                                              | 1 /                                                                                                 |                                                           |
|                                                                                                              |                                                                                 | and the second se |                         | Г                |                                                              | RECAL                                                                | IBRATION                                                                                            |                                                           |
| Tstd:                                                                                                        | 298.15                                                                          | °K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                  |                                                              |                                                                      |                                                                                                     |                                                           |
| Tstd:<br>Pstd:                                                                                               | 298.15<br>760                                                                   | °K<br>mm Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | t                |                                                              |                                                                      |                                                                                                     | 000000000000000000000000000000000000000                   |
| Tstd:<br>Pstd:                                                                                               | 298.15<br>760<br>K                                                              | °K<br>mm Hg<br>ley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                  | US EPA reco                                                  | mmends an                                                            | nual recalibratio                                                                                   | n per 1998                                                |
| Tstd:<br>Pstd:<br>ΔH: calibrate                                                                              | 298.15<br>760<br>K<br>or manomet                                                | °K<br>mm Hg<br>ey<br>er reading (ii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n H2O)                  |                  | US EPA reco<br>40 Code o                                     | mmends an<br>of Federal R                                            | nual recalibratio<br>egulations Part 5                                                              | n per 1998<br>50 to 51,                                   |
| Tstd:<br>Pstd:<br>ΔH: calibrate<br>ΔP: rootsme<br>Ta: actual at                                              | 298.15<br>760 r<br>K<br>or manomet<br>ter manome                                | °K<br>mm Hg<br>er reading (in<br>eter reading (<br>perature (°K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n H2O)<br>mm Hg)        |                  | US EPA reco<br>40 Code o<br>Appendix B                       | mmends an<br>of Federal R<br>to Part 50,                             | nual recalibratio<br>egulations Part 5<br>Reference Meth                                            | n per 1998<br>50 to 51,<br>od for the                     |
| Tstd:<br>Pstd:<br>ΔH: calibrate<br>ΔP: rootsme<br>Ta: actual at<br>Pa: actual ba                             | 298.15<br>760<br>K<br>or manomet<br>ster manome<br>psolute temp<br>arometric pr | °K<br>mm Hg<br>er reading (ii<br>eter reading<br>berature (°K)<br>essure (mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n H2O)<br>mm Hg)<br>Hg) |                  | US EPA reco<br>40 Code o<br>Appendix B<br>Determinat         | mmends an<br>of Federal R<br>to Part 50,<br>ion of Suspe             | nual recalibratio<br>egulations Part 5<br>Reference Meth<br>inded Particulate                       | n per 1998<br>50 to 51,<br>od for the<br>Matter in        |
| Tstd:<br>Pstd:<br>ΔH: calibrate<br>ΔP: rootsme<br>Ta: actual at<br>Pa: actual ba<br>b: intercept             | 298.15<br>760<br>K<br>or manomet<br>ter manome<br>psolute temp<br>arometric pr  | °K<br>mm Hg<br>er reading (in<br>eter reading (<br>berature (°K)<br>essure (mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n H2O)<br>mm Hg)<br>Hg) |                  | US EPA reco<br>40 Code o<br>Appendix B<br>Determinati<br>the | mmends an<br>of Federal R<br>to Part 50,<br>on of Suspe<br>Atmospher | nual recalibratio<br>egulations Part 5<br>Reference Meth<br>ended Particulate<br>re, 9.2.17, page 3 | on per 1998<br>50 to 51,<br>od for the<br>Matter in<br>80 |
| Tstd:<br>Pstd:<br>ΔH: calibrate<br>ΔP: rootsme<br>Ta: actual al<br>Pa: actual bi<br>b: intercept<br>m: slope | 298.15<br>760<br>K<br>or manomet<br>iter manome<br>psolute temp<br>arometric pr | °K<br>mm Hg<br>er reading (ii<br>eter reading (<br>berature (°K)<br>essure (mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n H2O)<br>mm Hg)<br>Hg) |                  | US EPA reco<br>40 Code o<br>Appendix B<br>Determinati<br>the | mmends an<br>of Federal R<br>to Part 50,<br>on of Suspe<br>Atmosphe  | nual recalibratio<br>egulations Part 5<br>Reference Meth<br>ended Particulate<br>re, 9.2.17, page 3 | on per 1998<br>50 to 51,<br>od for the<br>Matter in<br>30 |

Tisch Environmental, Inc. 145 South Miami Avenue

Village of Cleves, OH 45002

www.tisch-env.com TOLL FREE: (877)263-7610 FAX: (513)467-9009

| IC                     | 26                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |               |                               |                   | REC/                | ALIBRATION<br>UE DATE: |
|------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------|-------------------------------|-------------------|---------------------|------------------------|
|                        |                          | - 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |               |                               |                   | lanus               | ary 11 2020            |
| 1440 t 140             | -                        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |               |                               |                   | Janua               | ary 11, 2020           |
| al. Date:<br>Operator: | January 11,<br>Jim Tisch | r <i>tifu</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Calibration C<br>Rootsn                          | Certification | Call<br>on Informat<br>438320 | ion<br>Ta:<br>Pa: | 293<br>760.7        | °K<br>mm Hg            |
| Calibration            | Model #:                 | TE-5025A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Calib                                            | rator S/N:    | 0005                          |                   |                     |                        |
|                        | Run                      | Vol. Init<br>(m3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vol. Final<br>(m3)                               | ΔVol.<br>(m3) | ΔTime<br>(min)                | ΔP<br>(mm Hg)     | ΔH<br>(in H2O)      |                        |
|                        | 1                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                | 1             | 1.4090                        | 3.2               | 2.00                |                        |
|                        | 2                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                | 1             | 0.9980                        | 6.4               | 4.00                |                        |
|                        | 3                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                | 1             | 0,8900                        | 7.8               | 5.00                |                        |
|                        | 4                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                | 1             | 0.8450                        | 8.7               | 5.50                |                        |
|                        | 5                        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                               | 1             | 0.6990                        | 12.6              | 8.00                |                        |
|                        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D                                                | ata Tabulat   | tion                          |                   |                     |                        |
|                        | Vstd                     | Qstd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$   | (Tstd)        |                               | Qa                | √∆H(Ta/Pa)          |                        |
|                        | (m3)                     | (x-axis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (y-axi                                           | s)            | Va                            | (x-axis)          | (y-axis)            |                        |
|                        | 1.0138                   | 0.7195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.426                                            | 9             | 0.9958                        | 0.7067            | 0.8777              |                        |
|                        | 1.0095                   | 1.0115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.018                                            | 0             | 0.9916                        | 0.9936            | 1.2412              |                        |
|                        | 1.0076                   | 1.1321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.256                                            | 1             | 0.9897                        | 1.1121            | 1.3877              |                        |
|                        | 1.0064                   | 1.1910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.366                                            | 3             | 0.9886                        | 1.1699            | 1.4555              |                        |
|                        | 1.0012                   | 1.4323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.853                                            | 8             | 0.9834                        | 1.4059            | 1.7553              |                        |
|                        | OCTO                     | m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.998                                            | 61            | ~                             | m=                | 1.25149             |                        |
|                        | QSID                     | D=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.008                                           | 82            | QA                            | D=                | -0.00543            |                        |
|                        |                          | 1=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.335                                            | 57            |                               | 1=                | 0.99997             |                        |
|                        |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 + 11/2 + 1/2                                  | Calculation   | IS I                          |                   | 110.1               |                        |
|                        | Vstd=                    | AVOI((Pa-AP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /Pstd)(istd/ia                                   | )             | Va=                           | ΔVol((Pa-Δi       | P)/Pa)              |                        |
|                        | Qst0=                    | vsto/atime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tax and comme                                    |               | Qa-                           | varunne           |                     |                        |
|                        | <u> </u>                 | //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | For subseque                                     | ent now rat   | e calculation                 | 15:               | 1.5                 |                        |
|                        | Qstd=                    | 1/m (( \/ \DH (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{Pa}{Pstd}$ $\left(\frac{Tstd}{Ta}\right)$ | )-b)          | Qa=                           | 1/m((√∆F          | l(Ta/Pa))-b)        |                        |
|                        | Standard                 | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |               |                               |                   |                     |                        |
| Tstd                   | 298.15                   | "K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |               |                               | RECA              | LIBRATION           |                        |
| Pstd:                  | 760                      | mm Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |               | US EPA men                    | mmends a          | nual recalibratio   | o per 1998             |
| H: calibrat            | N manomet                | er reading //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14201                                            |               | 40 Code                       | of Federal I      | Regulations Part 4  | 50 to 51               |
| P: rootsma             | eter manome              | ter reading (i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mm He)                                           |               | Appendix P                    | to Part 50        | Reference Moth      | od for the             |
| a: actual al           | bsolute temp             | perature (*K)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |               | Determinat                    | ion of Susp       | ended Particulate   | Matter in              |
| a: actual b            | arometric pr             | essure (mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hg)                                              |               | the                           | Atmosphe          | re 9,7.17 nage      | 30                     |
|                        |                          | the state of the s |                                                  |               | 23.10                         | mineralprice      | and arecess holde : |                        |

ch Environmental, Inc.

Ľ

5 South Miami Avenue

lage of Cleves, OH 45002

www.tisch-env.com TOLL FREE: (877)263-7610 FAX: (513)467-9009



### Calibration Data for High Volume Sampler (TSP Sampler)

| Location      | : | CMA1b  | Calbration Date :     | 19-Dec-18 |
|---------------|---|--------|-----------------------|-----------|
| Equipment no. | : | HVS001 | Calbration Due Date : | 18-Feb-19 |

### CALIBRATION OF CONTINUOUS FLOW RECORDER

| Ambient Condition                     |                   |                     |              |                         |           |                     |                                   |                                                                                 |
|---------------------------------------|-------------------|---------------------|--------------|-------------------------|-----------|---------------------|-----------------------------------|---------------------------------------------------------------------------------|
| Temperature, T <sub>a</sub>           |                   | 293 Kelvin Pre      |              |                         | Pressure, | Pa                  | 1                                 | 020 mmHg                                                                        |
| Orifice Transfer Standard Information |                   |                     |              |                         |           |                     |                                   |                                                                                 |
| Equipment No.                         |                   | Ori31               | 66           | Slope, m <sub>c</sub>   | 2.122     | 31                  | Intercept, bo                     | -0.06016                                                                        |
| Last Calibration Date                 |                   | 24-Jan              | -18          |                         | ( H x P   | <sub>a</sub> / 101: | 3.3 x 298 /                       | T <sub>a</sub> ) <sup>1/2</sup>                                                 |
| Next Calibration Date                 |                   | 24-Jan              | -19          |                         | =         | m <sub>c</sub> x    | Q <sub>std</sub> + b <sub>c</sub> |                                                                                 |
| Calibration of TSP                    |                   |                     |              |                         |           |                     |                                   |                                                                                 |
| Calibration                           | Manometer Reading |                     |              | Q                       | std       | Continuous Flow     |                                   | IC                                                                              |
| Point                                 | н                 | H (inches of water) |              | (m <sup>3</sup> / min.) |           | Reco                | order, W                          | W(P <sub>a</sub> /1013.3x298/T <sub>a</sub> ) <sup>1/2</sup> /35.3 <sup>1</sup> |
|                                       | (up)              | (down)              | (difference) | X-axis                  |           | (CFM)               |                                   | Y-axis                                                                          |
| 1                                     | 1.6               | 1.6                 | 3.2          | 0.88                    | 312       | 26                  |                                   | 26.3074                                                                         |
| 2                                     | 2.7               | 2.7                 | 5.4          | 1.1:                    | 362       | 2 34                |                                   | 34.4020                                                                         |
| 3                                     | 4.0               | 4.0                 | 8.0          | 1.37                    | 768       | 8 45                |                                   | 45.5321                                                                         |
| 4                                     | 5.2               | 5.2                 | 10.4         | 1.56                    | 58        | 58 48               |                                   | 48.5676                                                                         |
| 5                                     | 6.3               | 6.3                 | 12.6         | 1.72                    | 207       |                     | 54                                | 54.6385                                                                         |
| By Linear Regression of Y o           | on X              |                     |              |                         |           |                     |                                   |                                                                                 |
| s                                     | Slope, m          | =                   | 33.7         | 706                     | Inte      | rcept, b =          | -3.                               | 2329                                                                            |
| Correlation Co                        | efficient*        | =                   | 0.99         | 933                     |           |                     |                                   |                                                                                 |
| Calibration A                         | ccepted           | =                   | Yes/         | No**                    | -         |                     |                                   |                                                                                 |
|                                       |                   |                     |              |                         |           |                     |                                   |                                                                                 |

\* if Correlation Coefficient < 0.990, check and recalibration again.

\*\* Delete as appropriate.

Date

| Remarks :     |     |           |            |
|---------------|-----|-----------|------------|
|               |     |           |            |
| Calibrated by | :   | Henry Lau | Checked by |
| Dete          | : - | 19-Dec-18 | Date       |

Chan Ka Chun : 19-Dec-18

:



# Calibration Data for High Volume Sampler (TSP Sampler)

| Location      | : | CMA1b  | Calbration Date     | : | 18-Feb-19 |
|---------------|---|--------|---------------------|---|-----------|
| Equipment no. | : | HVS001 | Calbration Due Date | : | 20-Apr-19 |

### CALIBRATION OF CONTINUOUS FLOW RECORDER

| Ambient Condition                     |                     |          |                 |                       |                  |                      |                                                                       |                                 |  |
|---------------------------------------|---------------------|----------|-----------------|-----------------------|------------------|----------------------|-----------------------------------------------------------------------|---------------------------------|--|
| Temperature, T <sub>a</sub>           |                     | 291      |                 | Kelvin                | Pressure, P      | а                    | 1                                                                     | 015 mmHg                        |  |
| Orifice Transfer Standard Information |                     |          |                 |                       |                  |                      |                                                                       |                                 |  |
| Equipment No.                         |                     | Ori0005  | 1               | Slope, m <sub>c</sub> | 1.998            | 61                   | Intercept, bc                                                         | -0.00882                        |  |
| Last Calibration Date                 |                     | 11-Jan-1 | 9               |                       | ( H x            | P <sub>a</sub> / 101 | 3.3 x 298 /                                                           | T <sub>a</sub> ) <sup>1/2</sup> |  |
| Next Calibration Date                 |                     | 11-Jan-2 | 0               |                       | =                | m <sub>c</sub> x     | Q <sub>std</sub> + b <sub>c</sub>                                     |                                 |  |
| Calibration of TSP                    |                     |          |                 |                       |                  |                      |                                                                       |                                 |  |
| Calibration                           | Manometer Reading   |          |                 | G                     | ) <sub>std</sub> | Contin               | uous Flow                                                             | IC                              |  |
| Point                                 | H (inches of water) |          | (m <sup>3</sup> | / min.)               | Reco             | order, W             | (W(P <sub>a</sub> /1013.3x298/T <sub>a</sub> ) <sup>1/2</sup> /35.31) |                                 |  |
|                                       | (up)                | (down)   | (difference)    | X-                    | X-axis (CF       |                      | CFM)                                                                  | Y-axis                          |  |
| 1                                     | 1.4                 | 1.4      | 2.8             | 0.8                   | 8524             |                      | 22                                                                    | 22.2817                         |  |
| 2                                     | 2.4                 | 2.4      | 4.8             | 1.1                   | 1147             |                      | 34                                                                    | 34.4354                         |  |
| 3                                     | 3.6                 | 3.6      | 7.2             | 1.3                   | 3642             |                      | 42                                                                    | 42.5378                         |  |
| 4                                     | 4.6                 | 4.6      | 9.2             | 1.5                   | 5415             |                      | 47                                                                    | 47.6018                         |  |
| 5                                     | 5.9                 | 5.9      | 11.8            | 1.1                   | 7452             |                      | 54                                                                    | 54.6914                         |  |
| By Linear Regression of               | Y on X              |          |                 |                       |                  |                      |                                                                       |                                 |  |
|                                       | Slope, m            | =        | 35.4            | 579                   | Inte             | ercept, b =          | -6                                                                    | .6215                           |  |
| Correlation Co                        | pefficient*         | =        | 0.99            | 958                   |                  |                      |                                                                       |                                 |  |
| Calibration                           | Accepted            | =        | Yes/ł           | <del>\o</del> **      |                  |                      |                                                                       |                                 |  |
|                                       |                     |          |                 |                       |                  |                      |                                                                       |                                 |  |

\* if Correlation Coefficient < 0.990, check and recalibration again.

| ** Delete as appro | priate. |           |   |            |   |              |
|--------------------|---------|-----------|---|------------|---|--------------|
| Remarks :          |         |           |   |            |   |              |
|                    |         |           |   |            |   |              |
| Calibrated by      | :       | Henry Lau |   | Checked by | : | Chan Ka Chun |
| Date               | :       | 18-Feb-19 | _ | Date       | : | 18-Feb-19    |



# Calibration Data for High Volume Sampler (TSP Sampler)

| Location      | : | CMA2a  | Calbration Date     | :   | 19-Dec-18 |
|---------------|---|--------|---------------------|-----|-----------|
| Equipment no. | : | HVS002 | Calbration Due Date | : _ | 18-Feb-19 |

### CALIBRATION OF CONTINUOUS FLOW RECORDER

| Ambient Condition                     |                     |        |                   |                                                |         |                     |                        |                                                  |          |
|---------------------------------------|---------------------|--------|-------------------|------------------------------------------------|---------|---------------------|------------------------|--------------------------------------------------|----------|
| Temperature, T <sub>a</sub>           |                     | 29     | 93                | Kelvin <b>Pressure</b> , <b>P</b> <sub>a</sub> |         |                     |                        | 1020                                             | mmHg     |
| Orifice Transfer Standard Information |                     |        |                   |                                                |         |                     |                        |                                                  |          |
| Equipment No.                         |                     | Ori31  | 66                | Slope, m <sub>c</sub>                          | 2.122   | 31                  | Intercept,             | bc                                               | -0.06016 |
| Last Calibration Date                 |                     | 24-Jan | -18               |                                                | ( H x F | P <sub>a</sub> / 10 | 13.3 x 298             | /T <sub>a</sub> )                                | 1/2      |
| Next Calibration Date                 |                     | 24-Jan | -19               |                                                | =       | m <sub>c</sub>      | x Q <sub>std</sub> + b | С                                                |          |
| Calibration of TSP                    |                     |        |                   |                                                |         |                     |                        |                                                  |          |
| Calibration                           | Manometer Reading   |        |                   | Q                                              | std     | Contin              | nuous Flow             | low IC                                           |          |
| Point                                 | H (inches of water) |        | (m <sup>3</sup> / | (m <sup>3</sup> / min.) Rec                    |         | order, W            | (W(P <sub>a</sub> /10  | 13.3x298/T <sub>a</sub> ) <sup>1/2</sup> /35.31) |          |
|                                       | (up)                | (down) | (difference)      | X-a                                            | xis     | (                   | CFM)                   |                                                  | Y-axis   |
| 1                                     | 1.5                 | 1.5    | 3.0               | 0.8                                            | 541     |                     | 28                     |                                                  | 28.3311  |
| 2                                     | 2.2                 | 2.2    | 4.4               | 1.0                                            | 284     |                     | 32                     |                                                  | 32.3784  |
| 3                                     | 3.7                 | 3.7    | 7.4               | 1.3                                            | 253     |                     | 40                     |                                                  | 40.4730  |
| 4                                     | 4.5                 | 4.5    | 9.0               | 1.4                                            | 586     |                     | 44                     |                                                  | 44.5203  |
| 5                                     | 6.0                 | 6.0    | 12.0              | 1.6                                            | 799     |                     | 52                     |                                                  | 52.6149  |
| By Linear Regression of Y o           | on X                |        |                   |                                                |         |                     |                        |                                                  |          |
| 5                                     | Slope, m            | =      | 29.0              | 948                                            | Inte    | rcept, b            | = 2                    | 2.7348                                           |          |
| Correlation Co                        | efficient*          | =      | 0.99              | 963                                            | _       |                     |                        |                                                  |          |
| Calibration A                         | ccepted             | =      | Yes/              | ₩0**                                           | _       |                     |                        |                                                  |          |
|                                       |                     |        |                   |                                                | _       |                     |                        |                                                  |          |

\* if Correlation Coefficient < 0.990, check and recalibration again.

| Remarks |  |
|---------|--|
|---------|--|

| Calibrated by | : | Henry Lau | Checked by | Chan Ka Chun |
|---------------|---|-----------|------------|--------------|
| Date          | : | 19-Dec-18 | Date       | 19-Dec-18    |



# Calibration Data for High Volume Sampler (TSP Sampler)

| Location      | : | CMA2a  | Calbration Date     | : | 18-Feb-19 |
|---------------|---|--------|---------------------|---|-----------|
| Equipment no. | : | HVS002 | Calbration Due Date | : | 20-Apr-19 |

### CALIBRATION OF CONTINUOUS FLOW RECORDER

|                                       | Ambient Condition   |          |                 |                             |                  |                     |                                       |                                 |  |
|---------------------------------------|---------------------|----------|-----------------|-----------------------------|------------------|---------------------|---------------------------------------|---------------------------------|--|
| Temperature, T <sub>a</sub>           |                     | 291      |                 | Kelvin <b>Pressure, P</b> a |                  |                     | 1                                     | 015 mmHg                        |  |
| Orifice Transfer Standard Information |                     |          |                 |                             |                  |                     |                                       |                                 |  |
| Equipment No.                         |                     | Ori0005  | 5               | Slope, m <sub>c</sub>       | 1.998            | 61                  | Intercept, bc                         | -0.00882                        |  |
| Last Calibration Date                 |                     | 11-Jan-1 | 9               |                             | ( H x            | P <sub>a</sub> / 10 | 13.3 x 298 /                          | T <sub>a</sub> ) <sup>1/2</sup> |  |
| Next Calibration Date                 |                     | 11-Jan-2 | 0               |                             | =                | m <sub>c</sub> :    | xQ <sub>std</sub> +b <sub>c</sub>     |                                 |  |
| Calibration of TSP                    |                     |          |                 |                             |                  |                     |                                       |                                 |  |
| Calibration                           | Manometer Reading   |          |                 | c                           | Q <sub>std</sub> | Conti               | nuous Flow                            | IC                              |  |
| Point                                 | H (inches of water) |          | (m <sup>3</sup> | / min.)                     | Recorder, W      |                     | $(W(P_a/1013.3x298/T_a)^{1/2}/35.31)$ |                                 |  |
|                                       | (up)                | (down)   | (difference)    | X-                          | axis             | (CFM)               |                                       | Y-axis                          |  |
| 1                                     | 1.7                 | 1.7      | 3.4             | 0.                          | 9388             |                     | 24                                    | 24.3073                         |  |
| 2                                     | 2.4                 | 2.4      | 4.8             | 1.                          | 1147             |                     | 33                                    | 33.4225                         |  |
| 3                                     | 4.0                 | 4.0      | 8.0             | 1.4                         | 4377             |                     | 42                                    | 42.5378                         |  |
| 4                                     | 5.1                 | 5.1      | 10.2            | 1.                          | 6229             |                     | 50                                    | 50.6402                         |  |
| 5                                     | 6.2                 | 6.2      | 12.4            | 1.                          | 7889             |                     | 58                                    | 58.7427                         |  |
| By Linear Regression of               | Y on X              |          |                 |                             |                  |                     |                                       |                                 |  |
|                                       | Slope, m            | =        | 38.5            | 348                         | Inte             | ercept, b           | = -11                                 | .2706                           |  |
| Correlation Coefficient* = 0.9        |                     |          | 0.99            | 949                         |                  |                     |                                       |                                 |  |
| Calibration                           | Accepted            | =        | - Yes/No**      |                             |                  |                     |                                       |                                 |  |
|                                       |                     |          |                 |                             |                  |                     |                                       |                                 |  |

\* if Correlation Coefficient < 0.990, check and recalibration again.

| Remarks :     |   |           |            |     |              |
|---------------|---|-----------|------------|-----|--------------|
| Calibrated by | : | Henry Lau | Checked by | :   | Chan Ka Chun |
| Date          | : | 18-Feb-19 | Date       | : _ | 18-Feb-19    |



# Calibration Data for High Volume Sampler (TSP Sampler)

| Location      | :   | CMA3a  | Calbration Date     | : | 19-Dec-18 |
|---------------|-----|--------|---------------------|---|-----------|
| Equipment no. | : _ | HVS012 | Calbration Due Date | : | 18-Feb-19 |

### CALIBRATION OF CONTINUOUS FLOW RECORDER

| Ambient Condition                     |                     |        |                         |                       |             |                  |                            |                                              |          |
|---------------------------------------|---------------------|--------|-------------------------|-----------------------|-------------|------------------|----------------------------|----------------------------------------------|----------|
| Temperature, T <sub>a</sub>           |                     |        | 293                     | Kelvin                | Pressure, F | <b>)</b> _a      |                            | 1020                                         | mmHg     |
| Orifice Transfer Standard Information |                     |        |                         |                       |             |                  |                            |                                              |          |
| Equipment No.                         |                     | Ori31  | 66                      | Slope, m <sub>c</sub> | 2.1223      | 31               | Intercept, k               | oc ·                                         | -0.06016 |
| Last Calibration Date                 |                     | 24-Jar | า-18                    |                       | (HxPa       | / 1013.          | 3 x 298 / 7                | Γ <sub>a</sub> ) <sup>1/2</sup>              |          |
| Next Calibration Date                 |                     | 24-Jar | ו-19                    |                       | =           | m <sub>c</sub> x | (Q <sub>std</sub> + b      | с                                            |          |
| Calibration of TSP                    |                     |        |                         |                       |             |                  |                            |                                              |          |
| Calibration                           | Manometer Reading   |        |                         | Q <sub>std</sub>      |             | Continu          | ious Flow                  |                                              | IC       |
| Point                                 | H (inches of water) |        | (m <sup>3</sup> / min.) |                       | Reco        | rder, W          | (W(P <sub>a</sub> /1013.3) | (298/T <sub>a</sub> ) <sup>1/2</sup> /35.31) |          |
|                                       | (up)                | (down) | (difference)            | X-axis                | ;           | (C               | FM)                        | Y-                                           | axis     |
| 1                                     | 1.2                 | 1.2    | 2.4                     | 0.7669                | )           | :                | 20                         | 20                                           | .2365    |
| 2                                     | 2.0                 | 2.0    | 4.0                     | 0.9819                | )           | :                | 28                         | 28                                           | .3311    |
| 3                                     | 3.5                 | 3.5    | 7.0                     | 1.2897                | 7           | :                | 37                         | 37.                                          | .4375    |
| 4                                     | 4.5                 | 4.5    | 9.0                     | 1.4586                | 3           | i                | 41                         | 41                                           | .4848    |
| 5                                     | 5.5                 | 5.5    | 11.0                    | 1.6096                | 3           |                  | 50                         | 50                                           | .5912    |
| By Linear Regression of Y of          | on X                |        |                         |                       |             |                  |                            |                                              |          |
| \$                                    | Slope, m            | =      | 33                      | 3.7811                | Inter       | cept, b =        |                            | 5.6420                                       |          |
| Correlation Cor                       | efficient*          | =      | 0                       | .9918                 | _           |                  |                            |                                              |          |
| Calibration Accepted = Ye             |                     | Ye     | ≥s/No**                 | -                     |             |                  |                            |                                              |          |
|                                       |                     |        |                         |                       | -           |                  |                            |                                              |          |

\* if Correlation Coefficient < 0.990, check and recalibration again.

| Remarks :     |     |           |            |   |              |
|---------------|-----|-----------|------------|---|--------------|
|               |     |           |            |   |              |
| Calibrated by | :   | Henry Lau | Checked by | : | Chan Ka Chun |
| Date          | : _ | 19-Dec-18 | Date       | : | 19-Dec-18    |



# Calibration Data for High Volume Sampler (TSP Sampler)

| Location      | : | СМАЗа  | Calbration Date     | : | 18-Feb-19 |
|---------------|---|--------|---------------------|---|-----------|
| Equipment no. | : | HVS012 | Calbration Due Date | : | 20-Apr-19 |

### CALIBRATION OF CONTINUOUS FLOW RECORDER

|                                       | Ambient Condition   |                         |                 |                             |                  |                     |                                       |                                 |  |
|---------------------------------------|---------------------|-------------------------|-----------------|-----------------------------|------------------|---------------------|---------------------------------------|---------------------------------|--|
| Temperature, T <sub>a</sub>           |                     | 291                     |                 | Kelvin <b>Pressure, P</b> a |                  |                     | 1                                     | 015 mmHg                        |  |
| Orifice Transfer Standard Information |                     |                         |                 |                             |                  |                     |                                       |                                 |  |
| Equipment No.                         |                     | Ori0005                 |                 | Slope, m <sub>c</sub>       | 1.998            | 61                  | Intercept, bc                         | -0.00882                        |  |
| Last Calibration Date                 |                     | 11-Jan-1                | 9               |                             | ( H x            | P <sub>a</sub> / 10 | )13.3 x 298 /                         | T <sub>a</sub> ) <sup>1/2</sup> |  |
| Next Calibration Date                 |                     | $= m_c x Q_{std} + b_c$ |                 |                             |                  |                     |                                       |                                 |  |
| Calibration of TSP                    |                     |                         |                 |                             |                  |                     |                                       |                                 |  |
| Calibration                           | Manometer Reading   |                         |                 | c                           | ) <sub>std</sub> | Conti               | nuous Flow                            | IC                              |  |
| Point                                 | H (inches of water) |                         | (m <sup>3</sup> | / min.)                     | Recorder, W      |                     | $(W(P_a/1013.3x298/T_a)^{1/2}/35.31)$ |                                 |  |
|                                       | (up)                | (down)                  | (difference)    | Х-                          | C-axis (CFM)     |                     | (CFM)                                 | Y-axis                          |  |
| 1                                     | 1.3                 | 1.3                     | 2.6             | 0.                          | 8215             |                     | 30                                    | 30.3841                         |  |
| 2                                     | 2.0                 | 2.0                     | 4.0             | 1.                          | 0179             |                     | 38                                    | 38.4866                         |  |
| 3                                     | 3.1                 | 3.1                     | 6.2             | 1.:                         | 2662             |                     | 44                                    | 44.5634                         |  |
| 4                                     | 4.0                 | 4.0                     | 8.0             | 1.                          | 4377             |                     | 49                                    | 49.6274                         |  |
| 5                                     | 5.0                 | 5.0                     | 10.0            | 1.                          | 6069             |                     | 54                                    | 54.6914                         |  |
| By Linear Regression of               | Y on X              |                         |                 |                             |                  |                     |                                       |                                 |  |
| Slope, m = 29.9                       |                     |                         | 29.9            | 992                         | Inte             | ercept, b           | =6.                                   | 6497                            |  |
| Correlation Coefficient* = 0.9        |                     |                         | 0.99            | 964                         |                  |                     |                                       |                                 |  |
| Calibration                           | Accepted            | =                       | Yes/ł           | <del>\o</del> **            |                  |                     |                                       |                                 |  |
|                                       |                     |                         |                 |                             |                  |                     |                                       |                                 |  |

\* if Correlation Coefficient < 0.990, check and recalibration again.

\*\* Delete as appropriate.

| Remarks :     |   |           |           |      |              |
|---------------|---|-----------|-----------|------|--------------|
|               |   |           |           |      |              |
| Calibrated by | : | Henry Lau | Checked b | by : | Chan Ka Chun |
| Date          | : | 18-Feb-19 | Date      | :    | 18-Feb-19    |



### Calibration Data for High Volume Sampler (TSP Sampler)

| Location      | : | CMA4a  | Calbration Date     | : | 19-Dec-18 |
|---------------|---|--------|---------------------|---|-----------|
| Equipment no. | : | HVS004 | Calbration Due Date | : | 18-Feb-19 |

### CALIBRATION OF CONTINUOUS FLOW RECORDER

| Ambient Condition                     |                   |           |              |                                   |           |                      |                        |                       |                                                  |
|---------------------------------------|-------------------|-----------|--------------|-----------------------------------|-----------|----------------------|------------------------|-----------------------|--------------------------------------------------|
| Temperature, T <sub>a</sub>           |                   | 29        | 93           | Kelvin                            | Pressure, | Pa                   |                        | 1020                  |                                                  |
| Orifice Transfer Standard Information |                   |           |              |                                   |           |                      |                        |                       |                                                  |
| Equipment No.                         |                   | Ori31     | 66           | Slope, m <sub>c</sub>             | 2.122     | 31                   | Intercept,             | bc                    | -0.06016                                         |
| Last Calibration Date                 |                   | 24-Jan    | -18          |                                   | ( H x F   | P <sub>a</sub> / 101 | 3.3 x 298              | /T <sub>a</sub> )     | 1/2                                              |
| Next Calibration Date                 | 24-Jan-19         |           |              |                                   | =         | m <sub>c</sub> >     | k Q <sub>std</sub> + b | С                     |                                                  |
| Calibration of TSP                    |                   |           |              |                                   |           |                      |                        |                       |                                                  |
| Calibration                           | Manometer Reading |           |              | Q                                 | std       | Continu              | uous Flow              | IC                    |                                                  |
| Point                                 | н                 | (inches c | of water)    | <b>r)</b> (m <sup>3</sup> / min.) |           | Reco                 | order, W               | (W(P <sub>a</sub> /10 | 13.3x298/T <sub>a</sub> ) <sup>1/2</sup> /35.31) |
|                                       | (up)              | (down)    | (difference) | X-a                               | xis       | (0                   | CFM)                   |                       | Y-axis                                           |
| 1                                     | 1.5               | 1.5       | 3.0          | 0.8                               | 541       |                      | 24                     |                       | 24.2838                                          |
| 2                                     | 2.0               | 2.0       | 4.0          | 0.98                              | 319       |                      | 31                     | 31.366                |                                                  |
| 3                                     | 3.6               | 3.6       | 7.2          | 1.30                              | )76       |                      | 40                     |                       | 40.4730                                          |
| 4                                     | 4.2               | 4.2       | 8.4          | 1.4                               | 101       |                      | 47                     |                       | 47.5558                                          |
| 5                                     | 5.7               | 5.7       | 11.4         | 1.63                              | 381       |                      | 56                     |                       | 56.6622                                          |
| By Linear Regression of Y             | ′ on X            |           |              |                                   |           |                      |                        |                       |                                                  |
| s                                     | Slope, m          | =         | 39.8         | 624                               | Inte      | rcept, b =           | -                      | 9.2955                |                                                  |
| Correlation Coe                       | efficient*        | =         | 0.99         | 932                               | _         |                      |                        |                       |                                                  |
| Calibration A                         | ccepted           | =         | Yes/I        | <del>\o</del> **                  | _         |                      |                        |                       |                                                  |
|                                       |                   |           |              |                                   |           |                      |                        |                       |                                                  |

\* if Correlation Coefficient < 0.990, check and recalibration again.

\*\* Delete as appropriate.

Remarks : \_\_\_\_\_

| Calibrated by | : | Henry Lau | Checked by | Chan Ka Chun |
|---------------|---|-----------|------------|--------------|
| Date          | : | 19-Dec-18 | Date :     | 19-Dec-18    |



# Calibration Data for High Volume Sampler (TSP Sampler)

| Location      | : | CMA4a  | Calbration Date     | : | 18-Feb-19 |
|---------------|---|--------|---------------------|---|-----------|
| Equipment no. | : | HVS004 | Calbration Due Date | : | 20-Apr-19 |

### CALIBRATION OF CONTINUOUS FLOW RECORDER

| Ambient Condition              |                       |           |                 |                  |                  |                     |                                                                      |                                 |  |  |
|--------------------------------|-----------------------|-----------|-----------------|------------------|------------------|---------------------|----------------------------------------------------------------------|---------------------------------|--|--|
| Temperature, T <sub>a</sub>    |                       | 291       |                 | Kelvin           | Pressure, P      | a                   | 1                                                                    | 015 mmHg                        |  |  |
|                                |                       |           | Orifice Tr      | ansfer Sta       | Indard Inform    | nation              |                                                                      |                                 |  |  |
| Equipment No.                  |                       | Ori0005 S |                 |                  | 1.998            | 61                  | Intercept, bc                                                        | -0.00882                        |  |  |
| Last Calibration Date          |                       | 11-Jan-1  | 9               |                  | ( H x            | P <sub>a</sub> / 10 | 13.3 x 298 /                                                         | T <sub>a</sub> ) <sup>1/2</sup> |  |  |
| Next Calibration Date          | ration Date 11-Jan-20 |           |                 |                  | =                | m <sub>c</sub> >    | κQ <sub>std</sub> +b <sub>c</sub>                                    |                                 |  |  |
|                                |                       |           |                 | Calibratio       | n of TSP         |                     |                                                                      |                                 |  |  |
| Calibration                    | Manometer Reading     |           |                 | G                | l <sub>std</sub> | Contir              | nuous Flow                                                           | IC                              |  |  |
| Point                          | H (inches of water)   |           | (m <sup>3</sup> | / min.)          | Rec              | order, W            | (W(P <sub>a</sub> /1013.3x298/T <sub>a</sub> ) <sup>1/2</sup> /35.31 |                                 |  |  |
|                                | (up)                  | (down)    | (difference)    | X-               | axis             | (CFM)               |                                                                      | Y-axis                          |  |  |
| 1                              | 1.4                   | 1.4       | 2.8             | 0.8              | 3524             |                     | 22                                                                   | 22.2817                         |  |  |
| 2                              | 2.2                   | 2.2       | 4.4             | 1.0              | 0674             |                     | 33                                                                   | 33.4225                         |  |  |
| 3                              | 2.9                   | 2.9       | 5.8             | 1.:              | 2248             |                     | 40                                                                   | 40.5122                         |  |  |
| 4                              | 4.1                   | 4.1       | 8.2             | 1.4              | 4555             |                     | 47                                                                   | 47.6018                         |  |  |
| 5                              | 5.8                   | 5.8       | 11.6            | 1.               | 7304             |                     | 58                                                                   | 58.7427                         |  |  |
| By Linear Regression of        | Y on X                |           |                 |                  |                  |                     |                                                                      |                                 |  |  |
|                                | Slope, m = 40.4       |           |                 | 458              | Inte             | ercept, b           | = -10                                                                | 0.6963                          |  |  |
| Correlation Coefficient* = 0.9 |                       |           | 0.99            | 957              |                  |                     |                                                                      |                                 |  |  |
| Calibration Accepted = Yes     |                       |           |                 | <del>\0</del> ** |                  |                     |                                                                      |                                 |  |  |
|                                |                       |           |                 |                  |                  |                     |                                                                      |                                 |  |  |

\* if Correlation Coefficient < 0.990, check and recalibration again.

| Remarks :     |   |           |            |     |              |
|---------------|---|-----------|------------|-----|--------------|
| Calibrated by | : | Henry Lau | Checked by | :   | Chan Ka Chun |
| Date          | : | 18-Feb-19 | Date       | : _ | 18-Feb-19    |



### Calibration Data for High Volume Sampler (TSP Sampler)

| Location      | : | CMA5b  | Calbration Date     | : | 19-Dec-18 |
|---------------|---|--------|---------------------|---|-----------|
| Equipment no. | : | HVS010 | Calbration Due Date | : | 18-Feb-19 |

#### CALIBRATION OF CONTINUOUS FLOW RECORDER

|                             |                     |          |                   | Ambient Co            | ondition    |                      |                        |                                                  |          |
|-----------------------------|---------------------|----------|-------------------|-----------------------|-------------|----------------------|------------------------|--------------------------------------------------|----------|
| Temperature, T <sub>a</sub> |                     | 293      |                   | Kelvin                | Pressure,   | Pa                   |                        | 1020                                             | mmHg     |
|                             |                     |          | Orifice Tr        | ansfer Stan           | dard Inform | nation               |                        |                                                  |          |
| Equipment No.               |                     | Ori316   | 6                 | Slope, m <sub>c</sub> | 2.122       | 31                   | Intercept, I           | oc                                               | -0.06016 |
| Last Calibration Date       | 24-Jan-18           |          |                   |                       | ( H x F     | P <sub>a</sub> / 101 | 3.3 x 298              | /T <sub>a</sub> ) <sup>1</sup>                   | /2       |
| Next Calibration Date       |                     | 24-Jan-1 | 9                 |                       | =           | m <sub>c</sub> x     | x Q <sub>std</sub> + b | с                                                |          |
| Calibration of TSP          |                     |          |                   |                       |             |                      |                        |                                                  |          |
| Calibration                 | Manometer Reading   |          |                   | Q                     | std         | Continu              | ious Flow              |                                                  | IC       |
| Point                       | H (inches of water) |          | (m <sup>3</sup> / | min.)                 | Reco        | rder, W              | (W(P <sub>a</sub> /10  | 13.3x298/T <sub>a</sub> ) <sup>1/2</sup> /35.31) |          |
|                             | (up)                | (down)   | difference        | X-a                   | xis         | (C                   | FM)                    |                                                  | Y-axis   |
| 1                           | 1.5                 | 1.5      | 3.0               | 0.85                  | 541         | :                    | 25                     |                                                  | 25.2956  |
| 2                           | 2.8                 | 2.8      | 5.6               | 1.15                  | 566         | :                    | 34                     |                                                  | 34.4020  |
| 3                           | 3.6                 | 3.6      | 7.2               | 1.30                  | )76         | :                    | 38                     |                                                  | 38.4493  |
| 4                           | 4.8                 | 4.8      | 9.6               | 1.50                  | )55         |                      | 46                     |                                                  | 46.5439  |
| 5                           | 6.0                 | 6.0      | 12.0              | 1.67                  | 799         |                      | 54                     |                                                  | 54.6385  |
| By Linear Regression of Y   | ′ on X              |          |                   |                       |             |                      |                        |                                                  |          |
| 5                           | Slope, m            | =        | 35                | .1088                 | Inte        | rcept, b =           |                        | 5.8015                                           |          |
| Correlation Coe             | efficient*          | =        | 0.                | 9935                  |             |                      |                        |                                                  |          |
| Calibration A               | ccepted             | =        | Yes               | s/No**                | -           |                      |                        |                                                  |          |
|                             |                     |          |                   |                       | -           |                      |                        |                                                  |          |

\* if Correlation Coefficient < 0.990, check and recalibration again.

\*\* Delete as appropriate.

Remarks : \_\_\_\_\_

| Calibrated by | : | Henry Lau | Checked by | : | Chan Ka Chun |
|---------------|---|-----------|------------|---|--------------|
| Date          | : | 19-Dec-18 | Date       | : | 19-Dec-18    |



# Calibration Data for High Volume Sampler (TSP Sampler)

| Location      | : | CMA5b  | Calbration Date     | : | 18-Feb-19 |
|---------------|---|--------|---------------------|---|-----------|
| Equipment no. | : | HVS010 | Calbration Due Date | : | 20-Apr-19 |

### CALIBRATION OF CONTINUOUS FLOW RECORDER

| Ambient Condition              |                     |                  |                 |                       |                  |                     |                                       |                                 |  |
|--------------------------------|---------------------|------------------|-----------------|-----------------------|------------------|---------------------|---------------------------------------|---------------------------------|--|
| Temperature, T <sub>a</sub>    |                     | 291              |                 | Kelvin                | Pressure, P      | a                   | 1                                     | 015 mmHg                        |  |
|                                |                     |                  | Orifice Tr      | ansfer Sta            | andard Inform    | mation              |                                       |                                 |  |
| Equipment No.                  |                     | Ori0005          |                 | Slope, m <sub>c</sub> | 1.998            | 61                  | Intercept, bc                         | -0.00882                        |  |
| Last Calibration Date          | 11-Jan-19           |                  |                 |                       | ( H x            | P <sub>a</sub> / 10 | 13.3 x 298 /                          | T <sub>a</sub> ) <sup>1/2</sup> |  |
| Next Calibration Date          |                     | 11-Jan-2         | 0               |                       | =                | m <sub>c</sub> :    | $x Q_{std} + b_{c}$                   |                                 |  |
|                                |                     |                  |                 | Calibratio            | on of TSP        |                     |                                       |                                 |  |
| Calibration                    | Manometer Reading   |                  |                 | c                     | ) <sub>std</sub> | Conti               | nuous Flow                            | IC                              |  |
| Point                          | H (inches of water) |                  | (m <sup>3</sup> | / min.)               | Recorder, W      |                     | $(W(P_a/1013.3x298/T_a)^{1/2}/35.31)$ |                                 |  |
|                                | (up)                | (down)           | (difference)    | X-                    | axis (CFM)       |                     | (CFM)                                 | Y-axis                          |  |
| 1                              | 1.2                 | 1.2              | 2.4             | 0.                    | 7895             | 37                  |                                       | 37.4738                         |  |
| 2                              | 2.0                 | 2.0              | 4.0             | 1.                    | 0179             |                     | 42                                    | 42.5378                         |  |
| 3                              | 3.1                 | 3.1              | 6.2             | 1.:                   | 2662             |                     | 50                                    | 50.6402                         |  |
| 4                              | 4.0                 | 4.0              | 8.0             | 1.                    | 4377             |                     | 56                                    | 56.7171                         |  |
| 5                              | 5.0                 | 5.0              | 10.0            | 1.                    | 6069             |                     | 61                                    | 61.7811                         |  |
| By Linear Regression of        | Y on X              |                  |                 |                       |                  |                     |                                       |                                 |  |
| Slope, m = 30.4                |                     |                  | 30.4            | 544                   | Inte             | ercept, b           | = 12                                  | .5644                           |  |
| Correlation Coefficient* = 0.9 |                     |                  | 0.99            | 972                   |                  |                     |                                       |                                 |  |
| Calibration                    | Yes/                | <del>\o</del> ** |                 |                       |                  |                     |                                       |                                 |  |
|                                |                     |                  |                 |                       |                  |                     |                                       |                                 |  |

\* if Correlation Coefficient < 0.990, check and recalibration again.

| ** Delete as appro | priate. |           |            |   |              |
|--------------------|---------|-----------|------------|---|--------------|
| Remarks :          |         |           |            |   |              |
|                    |         |           |            |   |              |
| Calibrated by      | :       | Henry Lau | Checked by | : | Chan Ka Chun |
| Date               | :       | 18-Feb-19 | Date       | : | 18-Feb-19    |
|                    |         |           |            |   |              |



# Calibration Data for High Volume Sampler (TSP Sampler)

| Location      | : | MA1e   | Calbration Date     | : | 19-Dec-18 |
|---------------|---|--------|---------------------|---|-----------|
| Equipment no. | : | HVS007 | Calbration Due Date | : | 18-Feb-19 |

### CALIBRATION OF CONTINUOUS FLOW RECORDER

| Ambient Condition              |                     |          |                 |                       |               |                     |                                                                       |                                 |  |
|--------------------------------|---------------------|----------|-----------------|-----------------------|---------------|---------------------|-----------------------------------------------------------------------|---------------------------------|--|
| Temperature, T <sub>a</sub>    |                     | 293      |                 | Kelvin                | Pressure, P   | а                   | 1                                                                     | 020 mmHg                        |  |
|                                |                     |          | Orifice Tr      | ansfer Sta            | andard Inform | mation              |                                                                       |                                 |  |
| Equipment No.                  |                     | Ori3166  |                 | Slope, m <sub>c</sub> | 2.122         | 31                  | Intercept, bc                                                         | -0.06016                        |  |
| Last Calibration Date          |                     | 24-Jan-1 | 8               |                       | ( H x         | P <sub>a</sub> / 10 | )13.3 x 298 /                                                         | T <sub>a</sub> ) <sup>1/2</sup> |  |
| Next Calibration Date          |                     | 24-Jan-1 | 9               |                       | =             | m <sub>c</sub>      | x Q <sub>std</sub> + b <sub>c</sub>                                   |                                 |  |
| Calibration of TSP             |                     |          |                 |                       |               |                     |                                                                       |                                 |  |
| Calibration Manometer Reading  |                     |          | c               | ) <sub>std</sub>      | Conti         | nuous Flow          | IC                                                                    |                                 |  |
| Point                          | H (inches of water) |          | (m <sup>3</sup> | / min.)               | Red           | corder, W           | (W(P <sub>a</sub> /1013.3x298/T <sub>a</sub> ) <sup>1/2</sup> /35.31) |                                 |  |
|                                | (up)                | (down)   | (difference)    | X-                    | X-axis (C     |                     | (CFM)                                                                 | Y-axis                          |  |
| 1                              | 1.8                 | 1.8      | 3.6             | 0.9                   | .9329 2       |                     | 24                                                                    | 24.2838                         |  |
| 2                              | 2.5                 | 2.5      | 5.0             | 1.0                   | 0944          |                     | 33                                                                    | 33.3902                         |  |
| 3                              | 4.0                 | 4.0      | 8.0             | 1.3                   | 3768          |                     | 43                                                                    | 43.5085                         |  |
| 4                              | 5.2                 | 5.2      | 10.4            | 1.                    | 5658          |                     | 50                                                                    | 50.5912                         |  |
| 5                              | 6.5                 | 6.5      | 13.0            | 1.1                   | 7473          |                     | 57                                                                    | 57.6740                         |  |
| By Linear Regression of        | Y on X              |          |                 |                       |               |                     |                                                                       |                                 |  |
| Slope, m = 39.8                |                     |          | 39.8            | 628                   | Inte          | ercept, b           | = -11                                                                 | .6647                           |  |
| Correlation Coefficient* = 0.9 |                     |          | 0.99            | 973                   |               |                     |                                                                       |                                 |  |
| Calibration                    | Accepted            | =        | Yes/ł           | <del>\o</del> **      |               |                     |                                                                       |                                 |  |
|                                |                     |          |                 |                       |               |                     |                                                                       |                                 |  |

\* if Correlation Coefficient < 0.990, check and recalibration again.

| Remarks :     |   |           |            |   |              |
|---------------|---|-----------|------------|---|--------------|
| Calibrated by | : | Henry Lau | Checked by | : | Chan Ka Chun |
| Date          | : | 19-Dec-18 | Date       | : | 19-Dec-18    |



# Calibration Data for High Volume Sampler (TSP Sampler)

| Location      | : | MA1e   | Calbration Date     | : | 18-Feb-19 |
|---------------|---|--------|---------------------|---|-----------|
| Equipment no. | : | HVS007 | Calbration Due Date | : | 20-Apr-19 |

### CALIBRATION OF CONTINUOUS FLOW RECORDER

| Ambient Condition             |                     |          |                 |                       |                  |                     |                                       |                                 |
|-------------------------------|---------------------|----------|-----------------|-----------------------|------------------|---------------------|---------------------------------------|---------------------------------|
| Temperature, T <sub>a</sub>   |                     | 291      |                 | Kelvin                | Pressure, P      | а                   | 1                                     | 015 mmHg                        |
|                               |                     |          | Orifice Tr      | ansfer Sta            | andard Inform    | mation              |                                       |                                 |
| Equipment No.                 |                     | Ori0005  |                 | Slope, m <sub>c</sub> | 1.998            | 61                  | Intercept, bc                         | -0.00882                        |
| Last Calibration Date         | 11-Jan-19           |          |                 |                       | ( H x            | P <sub>a</sub> / 10 | 13.3 x 298 /                          | T <sub>a</sub> ) <sup>1/2</sup> |
| Next Calibration Date         |                     | 11-Jan-2 | 0               |                       | =                | m <sub>c</sub> :    | xQ <sub>std</sub> +b <sub>c</sub>     |                                 |
|                               |                     |          |                 | Calibratio            | on of TSP        |                     |                                       |                                 |
| Calibration                   | Manometer Reading   |          |                 | c                     | ) <sub>std</sub> | Conti               | nuous Flow                            | IC                              |
| Point                         | H (inches of water) |          | (m <sup>3</sup> | / min.)               | Recorder, W      |                     | $(W(P_a/1013.3x298/T_a)^{1/2}/35.31)$ |                                 |
|                               | (up)                | (down)   | (difference)    | X-                    | axis             |                     | (CFM)                                 | Y-axis                          |
| 1                             | 1.8                 | 1.8      | 3.6             | 0.                    | 9659             |                     | 22                                    | 22.2817                         |
| 2                             | 2.4                 | 2.4      | 4.8             | 1.                    | 1147             |                     | 31                                    | 31.3969                         |
| 3                             | 3.8                 | 3.8      | 7.6             | 1.4                   | 4014             |                     | 41                                    | 41.5250                         |
| 4                             | 5.0                 | 5.0      | 10.0            | 1.                    | 6069             |                     | 50                                    | 50.6402                         |
| 5                             | 6.1                 | 6.1      | 12.2            | 1.                    | 7744             |                     | 56                                    | 56.7171                         |
| By Linear Regression of       | Y on X              |          |                 |                       |                  |                     |                                       |                                 |
|                               | Slope, m            | =        | 41.5            | 898                   | Inte             | ercept, b           | = -16                                 | 6.5769                          |
| Correlation Coefficient* = 0. |                     |          |                 | 969                   |                  |                     |                                       |                                 |
| Calibration                   | Accepted            | =        | Yes/ł           | <del>Vo</del> **      |                  |                     |                                       |                                 |
|                               |                     |          |                 |                       |                  |                     |                                       |                                 |

\* if Correlation Coefficient < 0.990, check and recalibration again.

| Remarks :     |   |           |   |            |   |              |
|---------------|---|-----------|---|------------|---|--------------|
| Calibrated by | : | Henry Lau |   | Checked by | : | Chan Ka Chun |
| Date          | : | 18-Feb-19 | _ | Date       | : | 18-Feb-19    |



# Calibration Data for High Volume Sampler (TSP Sampler)

| Location      | : | MA1w   | Calbration Date     | : | 19-Dec-18 |
|---------------|---|--------|---------------------|---|-----------|
| Equipment no. | : | HVS008 | Calbration Due Date | : | 18-Feb-19 |

### CALIBRATION OF CONTINUOUS FLOW RECORDER

| Ambient Condition                     |                     |           |                 |                       |                  |                     |                                                                       |                                 |  |
|---------------------------------------|---------------------|-----------|-----------------|-----------------------|------------------|---------------------|-----------------------------------------------------------------------|---------------------------------|--|
| Temperature, T <sub>a</sub>           |                     | 293       |                 | Kelvin                | Pressure, P      | а                   | 1                                                                     | 020 mmHg                        |  |
| Orifice Transfer Standard Information |                     |           |                 |                       |                  |                     |                                                                       |                                 |  |
| Equipment No.                         |                     | Ori3166   |                 | Slope, m <sub>c</sub> | 2.122            | 31                  | Intercept, bc                                                         | -0.06016                        |  |
| Last Calibration Date                 |                     | 24-Jan-18 |                 |                       | ( H x            | P <sub>a</sub> / 10 | 13.3 x 298 /                                                          | T <sub>a</sub> ) <sup>1/2</sup> |  |
| Next Calibration Date                 |                     | 24-Jan-1  | 9               |                       | =                | m <sub>c</sub> :    | xQ <sub>std</sub> +b <sub>c</sub>                                     |                                 |  |
| Calibration of TSP                    |                     |           |                 |                       |                  |                     |                                                                       |                                 |  |
| Calibration                           | Manometer Reading   |           |                 | G                     | ) <sub>std</sub> | Conti               | nuous Flow                                                            | IC                              |  |
| Point                                 | H (inches of water) |           | (m <sup>3</sup> | / min.) Recor         |                  | order, W            | (W(P <sub>a</sub> /1013.3x298/T <sub>a</sub> ) <sup>1/2</sup> /35.31) |                                 |  |
|                                       | (up)                | (down)    | (difference)    | X-                    | axis             |                     | (CFM)                                                                 | Y-axis                          |  |
| 1                                     | 1.7                 | 1.7       | 3.4             | 0.9                   | 9074             |                     | 24                                                                    | 24.2838                         |  |
| 2                                     | 2.6                 | 2.6       | 5.2             | 1.1                   | 1155             |                     | 33                                                                    | 33.3902                         |  |
| 3                                     | 4.2                 | 4.2       | 8.4             | 1.4                   | 4101             | 43                  |                                                                       | 43.5085                         |  |
| 4                                     | 5.3                 | 5.3       | 10.6            | 1.                    | 5806             |                     | 50                                                                    | 50.5912                         |  |
| 5                                     | 6.6                 | 6.6       | 13.2            | 1.1                   | 7605             |                     | 57                                                                    | 57.6740                         |  |
| By Linear Regression of               | Y on X              |           |                 |                       |                  |                     |                                                                       |                                 |  |
|                                       | Slope, m            | =         | 38.5            | 875                   | Inte             | ercept, b           | = -10                                                                 | .3897                           |  |
| Correlation Coefficient* = 0.9993     |                     |           |                 |                       |                  |                     |                                                                       |                                 |  |
| Calibration                           | Accepted            | =         | Yes/ł           | <del>\o</del> **      |                  |                     |                                                                       |                                 |  |
|                                       |                     |           |                 |                       |                  |                     |                                                                       |                                 |  |

\* if Correlation Coefficient < 0.990, check and recalibration again.

\*\* Delete as appropriate.

| Remarks :     |   |           |   |            |   |              |
|---------------|---|-----------|---|------------|---|--------------|
| Calibrated by | : | Henry Lau |   | Checked by | : | Chan Ka Chun |
| Date          | : | 19-Dec-18 | _ | Date       | : | 19-Dec-18    |

\_



# Calibration Data for High Volume Sampler (TSP Sampler)

| Location      | : | MA1w   | Calbration Date     | : | 18-Feb-19 |
|---------------|---|--------|---------------------|---|-----------|
| Equipment no. | : | HVS008 | Calbration Due Date | : | 20-Apr-19 |

### CALIBRATION OF CONTINUOUS FLOW RECORDER

| Ambient Condition               |                     |           |                 |                       |                  |                     |                                                                       |                                 |
|---------------------------------|---------------------|-----------|-----------------|-----------------------|------------------|---------------------|-----------------------------------------------------------------------|---------------------------------|
| Temperature, T <sub>a</sub>     |                     | 291       |                 | Kelvin                | Pressure, P      | a                   | 1                                                                     | 015 mmHg                        |
|                                 |                     |           | Orifice Tr      | ansfer Sta            | andard Inform    | nation              |                                                                       |                                 |
| Equipment No.                   |                     | Ori0005   |                 | Slope, m <sub>c</sub> | 1.998            | 61                  | Intercept, bc                                                         | -0.00882                        |
| Last Calibration Date           |                     | 11-Jan-19 |                 |                       | ( H x            | P <sub>a</sub> / 10 | )13.3 x 298 /                                                         | T <sub>a</sub> ) <sup>1/2</sup> |
| Next Calibration Date           |                     | 11-Jan-2  | 0               |                       | =                | m <sub>c</sub>      | xQ <sub>std</sub> +b <sub>c</sub>                                     |                                 |
|                                 |                     |           |                 | Calibratio            | on of TSP        |                     |                                                                       |                                 |
| Calibration                     | Manometer Reading   |           |                 | c                     | Q <sub>std</sub> | Conti               | nuous Flow                                                            | IC                              |
| Point                           | H (inches of water) |           | (m <sup>3</sup> | / min.)               | Recorder, W      |                     | (W(P <sub>a</sub> /1013.3x298/T <sub>a</sub> ) <sup>1/2</sup> /35.31) |                                 |
|                                 | (up)                | (down)    | (difference)    | X-                    | axis             |                     | (CFM)                                                                 | Y-axis                          |
| 1                               | 1.8                 | 1.8       | 3.6             | 0.                    | 9659             |                     | 24                                                                    | 24.3073                         |
| 2                               | 2.6                 | 2.6       | 5.2             | 1.                    | 1600             | 34                  |                                                                       | 34.4354                         |
| 3                               | 4.0                 | 4.0       | 8.0             | 1.4                   | 4377             |                     | 42                                                                    | 42.5378                         |
| 4                               | 5.2                 | 5.2       | 10.4            | 1.                    | 6386             |                     | 50                                                                    | 50.6402                         |
| 5                               | 6.4                 | 6.4       | 12.8            | 1.3                   | 8174             |                     | 54                                                                    | 54.6914                         |
| By Linear Regression of         | Y on X              |           |                 |                       |                  |                     |                                                                       |                                 |
|                                 | Slope, m            | =         | 35.2            | 899                   | Inte             | ercept, b           | = -8                                                                  | .2225                           |
| Correlation Coefficient* = 0.5  |                     |           |                 | 934                   |                  |                     |                                                                       |                                 |
| Calibration Accepted = Yes/No** |                     |           |                 |                       |                  |                     |                                                                       |                                 |
|                                 |                     |           |                 |                       |                  |                     |                                                                       |                                 |

\* if Correlation Coefficient < 0.990, check and recalibration again.

| Remarks :     |   |           |            |     |              |
|---------------|---|-----------|------------|-----|--------------|
| Calibrated by | : | Henry Lau | Checked by | :   | Chan Ka Chun |
| Date          | : | 18-Feb-19 | Date       | : _ | 18-Feb-19    |



#### 综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港美行就道 37號利達中心12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533



# CERTIFICATE OF CALIBRATION

| Certificate No.:                | 18CA1114 02       |                 |        | Page         | 1 | of      | 2       |
|---------------------------------|-------------------|-----------------|--------|--------------|---|---------|---------|
| Item tested                     |                   |                 |        |              |   |         |         |
| Description:                    | Sound Level Mete  | (Type 1)        | 20 O   | Microphone   |   |         |         |
| Manufacturer:                   | B&K               |                 |        | B&K          |   |         |         |
| Type/Model No.:                 | 2236              |                 | 2 3    | 4188         |   |         |         |
| Serial/Equipment No.:           | 2100736           |                 | 8) - E | 2288941      |   |         |         |
| Adaptors used:                  |                   |                 | Ş :    | -            |   |         |         |
| Item submitted by               |                   |                 |        |              |   |         |         |
| Customer Name:                  | Lam Environment   | al Service Ltd. |        |              |   |         |         |
| Address of Customer:            | The second second |                 |        |              |   |         |         |
| Request No .:                   | -                 |                 |        |              |   |         |         |
| Date of receipt:                | 14-Nov-2018       |                 |        |              |   |         |         |
| Date of test:                   | 15-Nov-2018       |                 |        |              |   |         |         |
| Reference equipment             | used in the calib | ration          |        |              |   |         |         |
| Description:                    | Model:            | Serial No.      |        | Expiry Date: |   | Traceal | ale to: |
| Multi function sound calibrator | B&K 4228          | 2288444         |        | 23-Aug-2019  |   | CIGISME | C       |
| Sional generator                | DS 360            | 33873           |        | 24-Apr-2019  |   | CEPREI  |         |
| Signal generator                | DS 360            | 61227           |        | 23-Apr-2019  |   | CEPREI  |         |
| Ambient conditions              |                   | Control -       |        |              |   |         |         |
| Temperature:                    | 20 ± 1 °C         |                 |        |              |   |         |         |
| Relative humidity:              | 50 ± 10 %         |                 |        |              |   |         |         |
| Air pressure:                   | 1000 ± 5 hPa      |                 |        |              |   |         |         |
|                                 |                   |                 |        |              |   |         |         |
| Test enecifications             |                   |                 |        |              |   |         |         |

- and the lab calibration procedure SMTP004-CA-152. 2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

### Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory: Date: 15-Nov-2018 Company Chop:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-18 num 1/Rev.C/01/02/2007



### 綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香 憲 黄 竹 坑 道 3 7 號 利 嶠 中 心 1 2 樓 12F., Laader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533



2

### CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA1114 02

Page

of

#### **Electrical Tests** 1.

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

| Test:                           | Subtest:                                         | Status: | Expanded<br>Uncertanity (dB) | Coverage<br>Factor |
|---------------------------------|--------------------------------------------------|---------|------------------------------|--------------------|
| Self-generated noise            | A                                                | Pass    | 0.3                          |                    |
| Series and the series of        | c                                                | Pass    | 1.0                          | 2.1                |
|                                 | Lin                                              | Pass    | 20                           | 22                 |
| Linearity range for Leg         | At reference range . Step 5 dB at 4 kHz          | Pass    | 0.3                          |                    |
|                                 | Reference SPL on all other ranges                | Pass    | 0.3                          |                    |
|                                 | 2 dB below upper limit of each range             | Pass    | 0.3                          |                    |
|                                 | 2 dB above lower limit of each range             | Pass    | 0.3                          |                    |
| Linearity range for SPL         | At reference range . Step 5 dB at 4 kHz          | Pass    | 0.3                          |                    |
| Frequency weightings            | A                                                | Pass    | 0.3                          |                    |
|                                 | c                                                | Pass    | 0.3                          |                    |
|                                 | Lin                                              | Pass    | 0.3                          |                    |
| Time weightings                 | Single Burst Fast                                | Pass    | 0.3                          |                    |
|                                 | Single Burst Slow                                | Pass    | 0.3                          |                    |
| Peak response                   | Single 100µs rectangular pulse                   | Pass    | 0.3                          |                    |
| R.M.S. accuracy                 | Crest factor of 3                                | Pass    | 0.3                          |                    |
| Time weighting I                | Single burst 5 ms at 2000 Hz                     | Pass    | 0.3                          |                    |
| Control of the Market of Market | Repeated at frequency of 100 Hz                  | Pass    | 0.3                          |                    |
| Time averaging                  | 1 ms burst duty factor 1/10 <sup>3</sup> at 4kHz | Pass    | 0.3                          |                    |
| 100010-00000000000              | 1 ms burst duty factor 1/10 <sup>4</sup> at 4kHz | Pass    | 0.3                          |                    |
| Pulse range                     | Single burst 10 ms at 4 kHz                      | Pass    | 0.4                          |                    |
| Sound exposure level            | Single burst 10 ms at 4 kHz                      | Pass    | 0.4                          |                    |
| Overload indication             | SPL                                              | Pass    | 0.3                          |                    |
|                                 | Leq                                              | Pass    | 0.4                          |                    |

#### 2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

| Test:             | Subtest                | Status | Expanded<br>Uncertanity (dB) | Coverage<br>Factor |
|-------------------|------------------------|--------|------------------------------|--------------------|
| Acoustic response | Weighting A at 125 Hz  | Pass   | 0.3                          |                    |
|                   | Weighting A at 8000 Hz | Pass   | 0.5                          |                    |

#### Response to associated sound calibrator 3.

#### N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

|                | 1                           | - End -     | Amin                          |  |
|----------------|-----------------------------|-------------|-------------------------------|--|
| Calibrated by: | ~ 7                         | Checked by: | 2 hours                       |  |
| Date:          | Fung Chi Yip<br>15-Nov-2018 | Date:       | Shek Kwong Tat<br>15-Nov-2018 |  |

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Sote & Materials Engineering Co., UM

Form No CARP152-2/Issue 1/Rev C/01/02/2007



#### 綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 港 黃 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 香

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533



### CERTIFICATE OF CALIBRATION

| Certificate No.:                                                                            | 18CA0213 02                                     |                       | Page                                   | 1 | of                                      | 2           |
|---------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------|----------------------------------------|---|-----------------------------------------|-------------|
| Item tested                                                                                 |                                                 |                       |                                        |   |                                         |             |
| Description:<br>Manufacturer:<br>Type/Model No.:<br>Serial/Equipment No.:<br>Adaptors used: | Sound Level Me<br>B & K<br>2250<br>2701778<br>- | ter (Type 1)          | Microphone<br>B & K<br>4950<br>2755097 |   | Preamp<br>B & K<br>ZC0032<br>19223<br>- |             |
| Item submitted by                                                                           |                                                 |                       |                                        |   |                                         |             |
| Customer Name:<br>Address of Customer:<br>Request No.:<br>Date of receipt:                  | Lam Geotechnic<br>-<br>13-Feb-2018              | s Limited.            |                                        |   |                                         |             |
| Date of test:                                                                               | 21-Feb-2018                                     |                       |                                        |   |                                         |             |
| Reference equipment                                                                         | used in the cali                                | bration               |                                        |   |                                         |             |
| Description:<br>Multi function sound calibrator                                             | Model:<br>B&K 4225                              | Serial No.<br>2288444 | Expiry Date:<br>08-Sep-2018            |   | Traceab                                 | le to:<br>C |

| Multi function sound calibrator | B&K 4226 | 2288444 | 08-Sep-2018 | CIGISME |
|---------------------------------|----------|---------|-------------|---------|
| Signal generator                | DS 360   | 33873   | 25-Apr-2018 | CEPREI  |
| Signal generator                | DS 360   | 61227   | 01-Apr-2018 | CEPREI  |
| Ambient conditions              |          |         |             |         |

| Temperature:       | 20 ± 1 °C    |
|--------------------|--------------|
| Relative humidity: | 50 ± 10 %    |
| Air pressure:      | 1000 ± 5 hPa |

#### Test specifications

- 1. The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580; Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference 3. between the free-field and pressure responsess of the Sound Level Meter.

#### Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets

Approved Signatory: Fen Jun O

21-Feb-2018 Company Chop:



Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

C Soils & Materials Engineering Co. Ltd

Form No CARP152-Missue 1/Rev C/01/02/2007



#### 综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道 37號利達中心12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website; www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533



### CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA0213 02

Page 2

2 of 2

#### 1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

|                         |                                                  |         | Expanded         | Coverage |
|-------------------------|--------------------------------------------------|---------|------------------|----------|
| Test:                   | Subtest:                                         | Status: | Uncertanity (dB) | Factor   |
| Self-generated noise    | А                                                | Pass    | 0.3              |          |
|                         | с                                                | Pass    | 0.8              |          |
|                         | Lin                                              | Pass    | 1.6              |          |
| Linearity range for Leq | At reference range , Step 5 dB at 4 kHz          | Pass    | 0.3              |          |
|                         | Reference SPL on all other ranges                | Pass    | 0.3              |          |
|                         | 2 dB below upper limit of each range             | Pass    | 0.3              |          |
|                         | 2 dB above lower limit of each range             | Pass    | 0.3              |          |
| Linearity range for SPL | At reference range , Step 5 dB at 4 kHz          | Pass    | 0.3              |          |
| Frequency weightings    | A                                                | Pass    | 0.3              |          |
|                         | С                                                | Pass    | 0.3              |          |
|                         | Lin                                              | Pass    | 0.3              |          |
| Time weightings         | Single Burst Fast                                | Pass    | 0.3              |          |
|                         | Single Burst Slow                                | Pass    | 0.3              |          |
| Peak response           | Single 100µs rectangular pulse                   | Pass    | 0.3              |          |
| R.M.S. accuracy         | Crest factor of 3                                | Pass    | 0.3              |          |
| Time weighting I        | Single burst 5 ms at 2000 Hz                     | Pass    | 0.3              |          |
|                         | Repeated at frequency of 100 Hz                  | Pass    | 0.3              |          |
| Time averaging          | 1 ms burst duty factor 1/103 at 4kHz             | Pass    | 0.3              |          |
|                         | 1 ms burst duty factor 1/10 <sup>4</sup> at 4kHz | Pass    | 0.3              |          |
| Pulse range             | Single burst 10 ms at 4 kHz                      | Pass    | 0.4              |          |
| Sound exposure level    | Single burst 10 ms at 4 kHz                      | Pass    | 0.4              |          |
| Overload indication     | SPL                                              | Pass    | 0.3              |          |
|                         | Leq                                              | Pass    | 0.4              |          |
|                         |                                                  |         |                  |          |

#### 2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

| Test:             | Subtest                | Status | Expanded<br>Uncertanity (dB) | Coverage<br>Factor |
|-------------------|------------------------|--------|------------------------------|--------------------|
| Acoustic response | Weighting A at 125 Hz  | Pass   | 0.3                          |                    |
|                   | Weighting A at 8000 Hz | Pass   | 0.5                          |                    |

#### 3, Response to associated sound calibrator

#### N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.



The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

C Soils & Material's Engineering Co. Ltd

Form No CARP152-2/Issue 1/Rev C/01/02/2007



#### 综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong.

E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533



### **CERTIFICATE OF CALIBRATION**

| 19CA0222 02                                        |                                                                                                                                                                                                                                      | Page                                                                                                                                                                                                                                                                 | 1 of 2                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                              |
| Sound Level Meter<br>B & K<br>2250<br>2701778<br>- | r (Type 1)                                                                                                                                                                                                                           | Microphone<br>B & K<br>4950<br>2755097<br>-                                                                                                                                                                                                                          | Preamp<br>B & K<br>ZC0032<br>19223<br>-                                                                                                                                                                                                                                                                                                      |
|                                                    |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                              |
| Lam Geotechnics<br>-<br>-<br>22-Feb-2019           | Limited.                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                              |
| 25-Feb-2019                                        |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                              |
| used in the calib                                  | ration                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                              |
| Model:<br>B&K 4226<br>DS 360<br>DS 360             | Serial No.<br>2288444<br>33873<br>61227                                                                                                                                                                                              | Expiry Date:<br>23-Aug-2019<br>24-Apr-2019<br>26-Dec-2019                                                                                                                                                                                                            | Traceable to:<br>CIGISMEC<br>CEPREI<br>CEPREI                                                                                                                                                                                                                                                                                                |
|                                                    |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                              |
| 21 ± 1 °C<br>55 ± 10 %<br>1005 ± 5 hPa             |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                              |
|                                                    | 19CA0222 02<br>Sound Level Meter<br>B & K<br>2250<br>2701778<br>-<br>Lam Geotechnics I<br>-<br>22-Feb-2019<br>25-Feb-2019<br>15ed in the calibut<br>Model:<br>B&K 4226<br>DS 360<br>DS 360<br>21 ± 1 °C<br>55 ± 10 %<br>1005 ± 5 hPa | 19CA0222 02   Sound Level Meter (Type 1)   B & K   2250   2701778   -   Lam Geotechnics Limited.   -   22-Feb-2019   25-Feb-2019   seed in the calibration   Model: Serial No.   B&K 4226 2288444   DS 360 33873   DS 360 61227   21 ± 1 °C 55 ± 10 %   1005 ± 5 hPa | 19CA0222 02 Page   Sound Level Meter (Type 1) Microphone   B & K B & K   2250 4950   2701778 2755097   - -   Lam Geotechnics Limited. -   - -   22-Feb-2019 -   25-Feb-2019 -   seed in the calibration Expiry Date:   B&K 4226 2288444 23-Aug-2019   DS 360 33873 24-Apr-2019   DS 360 61227 26-Dec-2019   21 ± 1 °C 55 ± 10 % 1005 ± 5 hPa |

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of <u>+</u>20%.
- 3. The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

#### **Test results**

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documenter on worksheets.

**Approved Signatory:** Fen Junqi

26-Feb-2019 Company Chop:



**Comments:** The results reported in his certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-1/Issue 1/Rev.C/01/02/2007



#### 綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黃竹坑道 37號利達中心 12樓

香港寅竹坑狙37號利莲中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

Page



2

### CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No..

19CA0222 02

2 of

1, Electrical Tests

The electrical tests were perfomed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

|                         |                                                  |         | Expanded         | Coverage |
|-------------------------|--------------------------------------------------|---------|------------------|----------|
| Test:                   | Subtest:                                         | Status: | Uncertanity (dB) | Factor   |
| Self-generated noise    | А                                                | Pass    | 0.3              |          |
| <b>3</b>                | С                                                | Pass    | 0.8              |          |
|                         | Lin                                              | Pass    | 1.6              |          |
| Linearity range for Leg | At reference range , Step 5 dB at 4 kHz          | Pass    | 0.3              |          |
|                         | Reference SPL on all other ranges                | Pass    | 0.3              |          |
|                         | 2 dB below upper limit of each range             | Pass    | 0.3              |          |
|                         | 2 dB above lower limit of each range             | Pass    | 0.3              |          |
| Linearity range for SPL | At reference range , Step 5 dB at 4 kHz          | Pass    | 0.3              |          |
| Frequency weightings    | A                                                | Pass    | 0.3              |          |
|                         | С                                                | Pass    | 0.3              |          |
|                         | Lin                                              | Pass    | 0.3              |          |
| Time weightings         | Single Burst Fast                                | Pass    | 0.3              |          |
|                         | Single Burst Slow                                | Pass    | 0.3              |          |
| Peak response           | Single 100µs rectangular pulse                   | Pass    | 0.3              |          |
| R.M.S. accuracy         | Crest factor of 3                                | Pass    | 0.3              |          |
| Time weighting I        | Single burst 5 ms at 2000 Hz                     | Pass    | 0.3              |          |
|                         | Repeated at frequency of 100 Hz                  | Pass    | 0.3              |          |
| Time averaging          | 1 ms burst duty factor 1/10 <sup>3</sup> at 4kHz | Pass    | 0.3              |          |
|                         | 1 ms burst duty factor 1/10 <sup>4</sup> at 4kHz | Pass    | 0.3              |          |
| Pulse range             | Single burst 10 ms at 4 kHz                      | Pass    | 0.4              |          |
| Sound exposure level    | Single burst 10 ms at 4 kHz                      | Pass    | 0.4              |          |
| Overload indication     | SPL                                              | Pass    | 0.3              |          |
|                         | Leq                                              | Pass    | 0.4              |          |

#### 2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

| Uncertanity (dB) | Factor     |
|------------------|------------|
| 0.3              |            |
| 0.5              |            |
|                  | 0.3<br>0.5 |

#### 3, Response to associated sound calibrator

#### N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

|                | 0             | - End -    |    | 1               |  |
|----------------|---------------|------------|----|-----------------|--|
| Calibrated by: | El            | Checked by | y: | $1 \sim \chi$   |  |
|                | Fong Chun Wai |            |    | Fung Chi Yip (\ |  |
| Date:          | 25-Feb-2019   | Date       | e: | 26-Feb-2019     |  |
|                |               |            |    |                 |  |

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007



#### 综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533



### CERTIFICATE OF CALIBRATION

| Certificate No.:                                                                            | 18CA0309 01                                    |                                         | Page                                                      | 1 | of                                     | 2            |
|---------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------|-----------------------------------------------------------|---|----------------------------------------|--------------|
| Item tested                                                                                 |                                                |                                         |                                                           |   |                                        |              |
| Description:<br>Manufacturer:<br>Type/Model No.:<br>Serial/Equipment No.:<br>Adaptors used: | Sound Level Mete<br>B & K<br>2250-L<br>2722310 | r (Type 1)                              | Microphone<br>B & K<br>4950<br>2698702                    |   | Preamp<br>B & K<br>ZC0032<br>13318     |              |
| Item submitted by                                                                           |                                                |                                         |                                                           |   |                                        |              |
| Customer Name:<br>Address of Customer:<br>Request No.:<br>Date of receipt:                  | Lam Geotechnics<br>-<br>-<br>09-Mar-2018       | Ltd.                                    |                                                           |   |                                        |              |
| Date of test:                                                                               | 10-Mar-2018                                    |                                         |                                                           |   |                                        |              |
| Reference equipment                                                                         | used in the calib                              | ration                                  |                                                           |   |                                        |              |
| Description:<br>Multi function sound calibrator<br>Signal generator<br>Signal generator     | Model:<br>B&K 4226<br>DS 360<br>DS 360         | Serial No.<br>2288444<br>33873<br>61227 | Expiry Date:<br>08-Sep-2018<br>25-Apr-2018<br>01-Apr-2018 |   | Traceat<br>CIGISME<br>CEPREI<br>CEPREI | ble to:<br>C |
| Ambient conditions                                                                          |                                                |                                         |                                                           |   |                                        |              |
| Temperature:<br>Relative humidity:<br>Air pressure:                                         | 21 ± 1 °C<br>50 ± 10 %<br>1000 ± 5 hPa         |                                         |                                                           |   |                                        |              |
| Test specifications                                                                         |                                                |                                         |                                                           |   |                                        |              |

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

#### **Test results**

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory: Date: 12-Mar-2018 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co. Ltd.

Form No CARP152-1/Issue 1/Rev C/01/02/2007



#### 綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黄竹坑道37號利達中心12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533



Causana

### CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA0309 01

Page

2 of 2

Europedad

#### 1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

|                         |                                                  |         | Expanded         | coverage |
|-------------------------|--------------------------------------------------|---------|------------------|----------|
| Test:                   | Subtest:                                         | Status: | Uncertanity (dB) | Factor   |
| Self-generated noise    | A                                                | Pass    | 0.3              |          |
|                         | С                                                | Pass    | 0.8              |          |
|                         | Lin                                              | Pass    | 1.6              |          |
| Linearity range for Leq | At reference range , Step 5 dB at 4 kHz          | Pass    | 0.3              |          |
|                         | Reference SPL on all other ranges                | Pass    | 0.3              |          |
|                         | 2 dB below upper limit of each range             | Pass    | 0.3              |          |
|                         | 2 dB above lower limit of each range             | Pass    | 0.3              |          |
| Linearity range for SPL | At reference range , Step 5 dB at 4 kHz          | Pass    | 0.3              |          |
| Frequency weightings    | A                                                | Pass    | 0.3              |          |
|                         | С                                                | Pass    | 0.3              |          |
|                         | Lin                                              | Pass    | 0.3              |          |
| Time weightings         | Single Burst Fast                                | Pass    | 0.3              |          |
|                         | Single Burst Slow                                | Pass    | 0.3              |          |
| Peak response           | Single 100µs rectangular pulse                   | Pass    | 0.3              |          |
| R.M.S. accuracy         | Crest factor of 3                                | Pass    | 0.3              |          |
| Time weighting I        | Single burst 5 ms at 2000 Hz                     | Pass    | 0.3              |          |
|                         | Repeated at frequency of 100 Hz                  | Pass    | 0.3              |          |
| Time averaging          | 1 ms burst duty factor 1/103 at 4kHz             | Pass    | 0.3              |          |
|                         | 1 ms burst duty factor 1/10 <sup>4</sup> at 4kHz | Pass    | 0.3              |          |
| Pulse range             | Single burst 10 ms at 4 kHz                      | Pass    | 0.4              |          |
| Sound exposure level    | Single burst 10 ms at 4 kHz                      | Pass    | 0.4              |          |
| Overload indication     | SPL                                              | Pass    | 0.3              |          |
|                         | Leq                                              | Pass    | 0.4              |          |
|                         |                                                  |         |                  |          |

#### 2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

| Test:             | Subtest                | Status | Expanded<br>Uncertanity (dB) | Coverage<br>Factor |
|-------------------|------------------------|--------|------------------------------|--------------------|
| Acoustic response | Weighting A at 125 Hz  | Pass   | 0.3                          |                    |
|                   | Weighting A at 8000 Hz | Pass   | 0.5                          |                    |

#### 3, Response to associated sound calibrator

#### N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.



The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co. Ltd.

Form No CARP152-2/Issue 1/Rev C/01/02/2007



#### 余字合試験有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong.

E-mail: smec@cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533



### CERTIFICATE OF CALIBRATION

Website: www.cigismec.com

| Certificate No.:                                                                            | 18CA0413 02                                   |                                | Page                                       | 1 | of                                 | 2           |
|---------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------|--------------------------------------------|---|------------------------------------|-------------|
| Item tested                                                                                 |                                               |                                |                                            |   |                                    |             |
| Description:<br>Manufacturer:<br>Type/Model No.:<br>Serial/Equipment No.:<br>Adaptors used: | Sound Level Met<br>B & K<br>2250-L<br>2722311 | er (Type 1)                    | Microphone<br>B & K<br>4950<br>2698703     |   | Preamp<br>B & K<br>ZC0032<br>13321 |             |
| Item submitted by                                                                           |                                               |                                |                                            |   |                                    |             |
| Customer Name:<br>Address of Customer:<br>Request No.:<br>Date of receipt:                  | Lam Geotechnics<br>-<br>-<br>13-Apr-2018      | s Ltd.                         |                                            |   |                                    |             |
| Date of test:                                                                               | 18-Apr-2018                                   |                                |                                            |   |                                    |             |
| Reference equipment                                                                         | used in the calil                             | bration                        |                                            |   |                                    |             |
| Description:<br>Multi function sound calibrator<br>Signal generator                         | Model:<br>8&K 4226<br>DS 360                  | Serial No.<br>2288444<br>33873 | Expiry Date:<br>08-Sep-2018<br>25-Apr-2018 |   | Traceab<br>CIGISME<br>CEPREI       | le to:<br>C |

#### Ambient conditions

| Temperature:       | 20 ± 1 °C    |
|--------------------|--------------|
| Relative humidity: | 50 ± 10 %    |
| Air pressure:      | 1000 ± 5 hPa |

#### Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

#### Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.



Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soits & Materials Engineering Co. Ltd.

Form No CARP152-1/Issue 1/Rev C/01/02/2007



#### 綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港首竹坑道37號利達中心12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong, E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533



### CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA0413 02

2 of 2

#### 1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

| Test:                   | Subtest:                                | Status: | Uncertanity (dB) | Coverage<br>Factor |
|-------------------------|-----------------------------------------|---------|------------------|--------------------|
| Self-generated noise    | А                                       | Pass    | 0.3              |                    |
|                         | С                                       | Pass    | 0.8              |                    |
|                         | Lin                                     | Pass    | 1.6              |                    |
| Linearity range for Leq | At reference range , Step 5 dB at 4 kHz | Pass    | 0.3              |                    |
|                         | Reference SPL on all other ranges       | Pass    | 0.3              |                    |
|                         | 2 dB below upper limit of each range    | Pass    | 0.3              |                    |
|                         | 2 dB above lower limit of each range    | Pass    | 0.3              |                    |
| Linearity range for SPL | At reference range , Step 5 dB at 4 kHz | Pass    | 0.3              |                    |
| Frequency weightings    | A                                       | Pass    | 0.3              |                    |
|                         | С                                       | Pass    | 0.3              |                    |
|                         | Lin                                     | Pass    | 0.3              |                    |
| Time weightings         | Single Burst Fast                       | Pass    | 0.3              |                    |
|                         | Single Burst Slow                       | Pass    | 0.3              |                    |
| Peak response           | Single 100µs rectangular pulse          | Pass    | 0.3              |                    |
| R.M.S. accuracy         | Crest factor of 3                       | Pass    | 0.3              |                    |
| Time weighting I        | Single burst 5 ms at 2000 Hz            | Pass    | 0.3              |                    |
|                         | Repeated at frequency of 100 Hz         | Pass    | 0.3              |                    |
| Time averaging          | 1 ms burst duty factor 1/103 at 4kHz    | Pass    | 0.3              |                    |
|                         | 1 ms burst duty factor 1/104 at 4kHz    | Pass    | 0.3              |                    |
| Pulse range             | Single burst 10 ms at 4 kHz             | Pass    | 0.4              |                    |
| Sound exposure level    | Single burst 10 ms at 4 kHz             | Pass    | 0.4              |                    |
| Overload indication     | SPL                                     | Pass    | 0.3              |                    |
|                         | Leq                                     | Pass    | 0.4              |                    |

#### 2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

| Test:             | Subtest                | Status | Expanded<br>Uncertanity (dB) | Coverage<br>Factor |
|-------------------|------------------------|--------|------------------------------|--------------------|
| Acoustic response | Weighting A at 125 Hz  | Pass   | 0.3                          |                    |
|                   | Weighting A at 8000 Hz | Pass   | 0.5                          |                    |

#### 3, Response to associated sound calibrator

#### N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.



The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

C Soils & Materials Engineering Co. Ltd

Form No.CARP152-2/Issue 1/Rev C/01/02/2007

Page



#### 综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港貴竹筑道37號利進中心12葉 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong,

E-mail: smec@cigismec.com Website: www.cigismec.com



### CERTIFICATE OF CALIBRATION

| Certificate No.:                                 | 19CA0116 02                        |             | Page                        | 1                   | of      | 2      |
|--------------------------------------------------|------------------------------------|-------------|-----------------------------|---------------------|---------|--------|
| Item tested                                      |                                    |             |                             |                     |         |        |
| Description:<br>Manufacturer:<br>Type/Model No.: | Sound Level Mete<br>B & K<br>2250L | er (Type 1) | Microphone<br>B & K<br>4950 | Microphone<br>B & K |         |        |
| Serial/Equipment No.:<br>Adaptors used:          | 3002695                            |             | 2940839                     |                     | 18582   |        |
| Item submitted by                                |                                    |             |                             |                     |         |        |
| Customer Name:                                   | Lam Geotechnics                    | Ltd.        |                             |                     |         |        |
| Address of Customer:                             | -                                  |             |                             |                     |         |        |
| Request No.:                                     | Beaucannes                         |             |                             |                     |         |        |
| Date of receipt:                                 | 16-Jan-2019                        |             |                             |                     |         |        |
| Date of test:                                    | 17-Jan-2019                        |             |                             |                     |         |        |
| Reference equipment                              | used in the calib                  | ration      |                             |                     |         |        |
| Description:                                     | Model:                             | Serial No.  | Expiry Date:                |                     | Traceab | le to: |
| Multi function sound calibrator                  | B&K 4226                           | 2288444     | 23-Aug-2019                 |                     | CIGISME | C      |
| Signal generator                                 | DS 360                             | 33873       | 24-Apr-2019                 |                     | CEPREI  |        |
| Signal generator                                 | DS 360                             | 61227       | 26-Dec-2019                 |                     | CEPREI  |        |
| Ambient conditions                               |                                    |             |                             |                     |         |        |
| Temperature:                                     | 21 ± 1 *C                          |             |                             |                     |         |        |
| Relative humidity:                               | 50 ± 10 %                          |             |                             |                     |         |        |
| Air pressure:                                    | 1005 ± 5 hPa                       |             |                             |                     |         |        |
| Test encelfications                              |                                    |             |                             | _                   |         |        |

#### Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of +20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

#### Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

đ. Fend Jungi





Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soits & Materials Engineering Co., Ltd.

Approved Signatory:

Form No.CARP152-Mesue MRev C/01/02/2007



### 綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香 挹 黃 竹 坑 道 3 7 號 利 嶐 中 心 1 2 條 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

19CA0116-02

Tel: (852) 2873 6860 Fax: (852) 2555 7533



### CERTIFICATE OF CALIBRATION

(Continuation Page)

Page 2 of 2

### 1. Electrical Tests

Certificate No.;

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

| Test:                   | Subtest:                                         | Status: | Expanded<br>Uncertanity (dB) | Coverage<br>Factor |
|-------------------------|--------------------------------------------------|---------|------------------------------|--------------------|
| Self-generated noise    | A                                                | Pass    | 0.3                          |                    |
|                         | C                                                | Pass    | 0.8                          |                    |
|                         | Lin                                              | Pass    | 1.6                          |                    |
| Linearity range for Leg | At reference range . Step 5 dB at 4 kHz          | Pass    | 0.3                          |                    |
|                         | Reference SPL on all other ranges                | Pass    | 0.3                          |                    |
|                         | 2 dB below upper limit of each range             | Pass    | 0.3                          |                    |
|                         | 2 dB above lower limit of each range             | Pass    | 0.3                          |                    |
| Linearity range for SPL | At reference range , Step 5 dB at 4 kHz          | Pass    | 0.3                          |                    |
| Frequency weightings    | A                                                | Pass    | 0.3                          |                    |
| M 122 M 12              | C                                                | Pass    | 0.3                          |                    |
|                         | Lin                                              | Pass    | 0.3                          |                    |
| Time weightings         | Single Burst Fast                                | Pass    | 0.3                          |                    |
|                         | Single Burst Slow                                | Pass    | 0.3                          |                    |
| Peak response           | Single 100µs rectangular pulse                   | Pass    | 0.3                          |                    |
| R.M.S. accuracy         | Crest factor of 3                                | Pass    | 0.3                          |                    |
| Time weighting I        | Single burst 5 ms at 2000 Hz                     | Pass    | 0.3                          |                    |
|                         | Repeated at frequency of 100 Hz                  | Pass    | 0.3                          |                    |
| Time averaging          | 1 ms burst duty factor 1/10 <sup>3</sup> at 4kHz | Pass    | 0.3                          |                    |
|                         | 1 ms burst duty factor 1/10 <sup>4</sup> at 4kHz | Pass    | 0.3                          |                    |
| Pulse range             | Single burst 10 ms at 4 kHz                      | Pass    | 0.4                          |                    |
| Sound exposure level    | Single burst 10 ms at 4 kHz                      | Pass    | 0.4                          |                    |
| Overload indication     | SPL                                              | Pass    | 0.3                          |                    |
|                         | Leq                                              | Pass    | 0.4                          |                    |

#### 2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

| Test:             | Subtest                | Status | Expanded<br>Uncertanity (dB) | Coverage<br>Factor |
|-------------------|------------------------|--------|------------------------------|--------------------|
| Acoustic response | Weighting A at 125 Hz  | Pass   | 0.3                          |                    |
|                   | Weighting A at 8000 Hz | Pass   | 0.5                          |                    |

3, Response to associated sound calibrator

#### N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.



The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Solts & Materials Engineering Co., Ltd.

Form No.CARP152 2/Issue 1/Rev C/01/02/2007



### 综合試驗有限公司 SOILS&MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong, E-mail: smec@clgismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533



### CERTIFICATE OF CALIBRATION

| Certificate No.:                | 18CA0907 02           |                       | Page                    | 1     | of         | 2                     |
|---------------------------------|-----------------------|-----------------------|-------------------------|-------|------------|-----------------------|
| Item tested                     |                       |                       |                         |       |            |                       |
| Description                     | Sound Level Mete      | er (Type 1)           | Microphone              |       | Preamp     |                       |
| Manufacturer:                   | B&K                   |                       | B&K                     |       | B&K        |                       |
| Type/Model No.:                 | 2250-L                |                       | 4950                    |       | ZC0032     |                       |
| Serial/Equipment No.:           | 3006790               |                       | 2827240                 |       | 21213      |                       |
| Adaptors used:                  | -                     |                       |                         |       |            |                       |
| Item submitted by               |                       |                       |                         |       |            |                       |
| Customer Name:                  | Lam Geotechnics       | Limited               |                         |       |            |                       |
| Address of Customer:            |                       |                       |                         |       |            |                       |
| Request No.:                    |                       |                       |                         |       |            |                       |
| Date of receipt:                | 07-Sep-2018           |                       |                         |       |            |                       |
| Date of test:                   | 10-Sep-2018           |                       |                         |       |            |                       |
| Reference equipment             | used in the calib     | ration                |                         |       |            |                       |
| Description:                    | Model:                | Serial No.            | Expiry Date:            |       | Traceab    | le to:                |
| Multi function sound calibrator | B&K 4226              | 2288444               | 23-Aug-2019             |       | CIGISME    | C                     |
| Sional generator                | DS 360                | 33873                 | 24-Apr-2019             |       | CEPRE!     | 3                     |
| Signal generator                | DS 360                | 61227                 | 23-Apr-2019             |       | CEPREI     |                       |
| Ambient conditions              |                       |                       |                         |       |            |                       |
| Temperature                     | 21 * 1 °C             |                       |                         |       |            |                       |
| Relative humidity:              | 50 ± 10 %             |                       |                         |       |            |                       |
| Air pressure:                   | 1005 ± 5 hPa          |                       |                         |       |            |                       |
| Test enecifications             |                       |                       |                         |       |            |                       |
| rest specifications             |                       |                       |                         |       |            |                       |
| 1 The Sound Level Me            | ter has been calibrat | ed in accordance with | the requirements as see | cifie | d in BS 79 | 80. Part 1            |
| and the lab calibratio          | n procedure SMTPO     | M.CA.152              | ine requirements so spe |       | 0.0000     | and the second second |

- The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

#### Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets.

Approved Signatory:

Feng

10-Sep-2018 Company Chop:



Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

@ Sold & Materials Engineering Cir. Ltd.

Form No. CARP 152-Literuar 1/Rev. CK01002/2007



### 综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

吉 地 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 懐 12/F, Leader Centre, 37 Wong Chuk Hang Road, Aberderin, Hong Kong. E-mail: smec@cligismec.com Website: www.cligismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

Page



### CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA0907 02

2 of 2

#### 1, Electrical Tests

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

| Test                            | Subtest:                                         | Status: | Expanded<br>Uncertanity (dB) | Coverage<br>Factor |
|---------------------------------|--------------------------------------------------|---------|------------------------------|--------------------|
| Self-generated noise            | A                                                | Pass    | 0.3                          |                    |
|                                 | c                                                | Pass    | 0.B                          |                    |
|                                 | Lin                                              | Pass    | 1.6                          |                    |
| Linearity range for Leg         | At reference range . Step 5 dB at 4 kHz          | Pass    | 0.3                          |                    |
| , , ,                           | Reference SPL on all other ranges                | Pass    | 0.3                          |                    |
|                                 | 2 dB below upper limit of each range             | Pass    | 0.3                          |                    |
|                                 | 2 dB above lower limit of each range             | Pass    | 0.3                          |                    |
| Linearity range for SPL         | At reference range . Step 5 dB at 4 kHz          | Pass    | 0.3                          |                    |
| Frequency weightings            | A                                                | Pass    | 0.3                          |                    |
|                                 | С                                                | Pass    | 0.3                          |                    |
|                                 | Lin                                              | Pass    | 0.3                          |                    |
| Time weightings                 | Single Burst Fast                                | Pass    | 0.3                          |                    |
| and a second second second      | Single Burst Slow                                | Pass    | 0.3                          |                    |
| Peak response                   | Single 100µs rectangular pulse                   | Pass    | 0.3                          |                    |
| R.M.S. accuracy                 | Crest factor of 3                                | Pass    | 0.3                          |                    |
| Time weighting 1                | Single burst 5 ms at 2000 Hz                     | Pass    | 0.3                          |                    |
| Contractory and the contractory | Repeated at frequency of 100 Hz                  | Pass    | 0.3                          |                    |
| Time averaging                  | 1 ms burst duty factor 1/103 at 4kHz             | Pass    | 0.3                          |                    |
|                                 | 1 ms burst duty factor 1/10 <sup>4</sup> at 4kHz | Pass    | 0.3                          |                    |
| Pulse range                     | Single burst 10 ms at 4 kHz                      | Pass    | 0.4                          |                    |
| Sound exposure level            | Single burst 10 ms at 4 kHz                      | Pass    | 0.4                          |                    |
| Overload indication             | SPL                                              | Pass    | 0.3                          |                    |
|                                 | Lea                                              | Pass    | 0.4                          |                    |

#### 2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

| Test:             | Subtest                | Status | Expanded<br>Uncertanity (dB) | Coverage<br>Factor |
|-------------------|------------------------|--------|------------------------------|--------------------|
| Acoustic response | Weighting A at 125 Hz  | Pass   | 0.3                          |                    |
|                   | Weighting A at 8000 Hz | Pass   | 0.5                          |                    |

#### 3, Response to associated sound calibrator

#### N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

End Calibrated by: Checked by: Fung Chi Yip sk Kwong Tat 10-Sep-2018 Date: 10-Sep-2018 Date:

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

O Sale & Materials Ergenütring Cit. Ltd.

Form No CARP 152 24ssue 1/Rev C/01/02/2007





### CERTIFICATE OF CALIBRATION

| Certificate No.:                                                                            | 18CA0510 04                                              |                                | Page                                       | 1 | of                               | 2            |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------|--------------------------------------------|---|----------------------------------|--------------|
| Item tested                                                                                 |                                                          |                                |                                            |   |                                  |              |
| Description:<br>Manufacturer:<br>Type/Model No.:<br>Serial/Equipment No.:<br>Adaptors used: | Sound Level Mete<br>Larson Davis<br>LxT1<br>0004796<br>- | er (Type 1)                    | Microphone<br>PCB<br>377B02<br>155507      |   | Preamp<br>PCB<br>PRMLx<br>042621 | )<br>T1L     |
| Item submitted by                                                                           |                                                          |                                |                                            |   |                                  |              |
| Customer Name:<br>Address of Customer:<br>Request No.:<br>Date of receipt:                  | Lam Geotechnics<br>-<br>-<br>10-May-2018                 | Ltd                            |                                            |   |                                  |              |
| Date of test:                                                                               | 11-May-2018                                              |                                |                                            |   |                                  |              |
| Reference equipment                                                                         | used in the calib                                        | ration                         |                                            |   |                                  |              |
| Description:<br>Multi function sound calibrator<br>Signal generator                         | Model:<br>B&K 4226<br>DS 360                             | Serial No.<br>2288444<br>61227 | Expiry Date:<br>08-Sep-2018<br>23-Apr-2019 |   | Traceat<br>CIGISME<br>CEPREI     | ole to:<br>C |
| Ambient conditions                                                                          |                                                          |                                |                                            |   |                                  |              |
| Temperature:<br>Relative humidity;<br>Air pressure:                                         | 21 ± 1 °C<br>50 ± 10 %<br>1005 ± 5 hPa                   |                                |                                            |   |                                  |              |

#### Test specifications

- The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2 The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

#### Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.

Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets

Fend Juna

Approved Signatory:





Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

C Soils & Materials Engineering Co., Ltd.

Form No CARP152-186506 1/Rev C/01/02/2007



#### 綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533



### CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA0510 04

Website: www.clgismec.com

Page

2 nf

#### 1, **Electrical Tests**

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances

| Test:                   | Subtest:                                         | Status: | Expanded<br>Uncertanity (dB) | Coverage<br>Factor |
|-------------------------|--------------------------------------------------|---------|------------------------------|--------------------|
| Self-generated noise    | A                                                | Pass    | 0.3                          |                    |
|                         | С                                                | Pass    | 0.8                          | 2.1                |
|                         | Lin                                              | Pass    | 16                           | 22                 |
| Linearity range for Leq | At reference range , Step 5 dB at 4 kHz          | Pass    | 0.3                          | 4                  |
|                         | Reference SPL on all other ranges                | Pass    | 0.3                          |                    |
|                         | 2 dB below upper limit of each range             | Pass    | 0.3                          |                    |
|                         | 2 dB above lower limit of each range             | Pass    | 0.3                          |                    |
| Linearity range for SPL | At reference range . Step 5 dB at 4 kHz          | Pass    | 0.3                          |                    |
| Frequency weightings    | A                                                | Pass    | 0.3                          |                    |
|                         | С                                                | Pass    | 0.3                          |                    |
|                         | Lin                                              | Pass    | 0.3                          |                    |
| Time weightings         | Single Burst Fast                                | Pass    | 0.3                          |                    |
|                         | Single Burst Slow                                | Pass    | 03                           |                    |
| Peak response           | Single 100µs rectangular pulse                   | Pass    | 0.3                          |                    |
| R.M.S. accuracy         | Crest factor of 3                                | Pass    | 0.3                          |                    |
| Time weighting I        | Single burst 5 ms at 2000 Hz                     | Pass    | 0.3                          |                    |
|                         | Repeated at frequency of 100 Hz                  | Pass    | 0.3                          |                    |
| Time averaging          | 1 ms burst duty factor 1/10 <sup>3</sup> at 4kHz | Pass    | 0.3                          |                    |
|                         | 1 ms burst duty factor 1/10 <sup>4</sup> at 4kHz | Pass    | 0.3                          |                    |
| Pulse range             | Single burst 10 ms at 4 kHz                      | Pass    | 0.5                          |                    |
| Sound exposure level    | Single burst 10 ms at 4 kHz                      | Pass    | 0.4                          |                    |
| Overload indication     | SPL                                              | Pass    | 0.4                          |                    |
|                         | Lea                                              | Pace    | 0.3                          |                    |
|                         |                                                  | 1 0 3 3 | 0.4                          |                    |

#### 2, Acoustic tests

The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

| Test:             | Subtest                | Status | Expanded<br>Uncertanity (dB) | Coverage<br>Factor |
|-------------------|------------------------|--------|------------------------------|--------------------|
| Acoustic response | Weighting A at 125 Hz  | Pass   | 0.3                          |                    |
|                   | Weighting A at 8000 Hz | Pass   | 0.5                          |                    |

#### 3. Response to associated sound calibrator

#### N/A

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated



The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level

C Sols & Materials Engineering Co. Ltd

Form No CARP152-24ssue 1/Rev C/01/02/2007

# Calibration Certificate

Certificate Number 2018010851

Customer: LAM Environmental Services Ltd 11/F Centre Point 181-185 Gloucester Road Wanchai, , Hong Kong

| Model Number         | iber CAL200<br>ber 13098<br>Is <b>Pass</b> |                                                                                                                        | Procedure Number                        | D0001.8385       |        |                 |  |
|----------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------|--------|-----------------|--|
| Serial Number        |                                            |                                                                                                                        | Technician                              | Scott Montgomery |        |                 |  |
| Test Results         |                                            |                                                                                                                        | Calibration Date                        | 29 Oct 2018      |        |                 |  |
| Initial Condition    | Incore                                     | bla.                                                                                                                   | Calibration Due                         |                  |        |                 |  |
|                      | Inoperable                                 |                                                                                                                        | Temperature                             | 23               | *C     | ± 0.3 °C        |  |
| Description          | Larson Davis CAL200 Acoustic Calibrator    |                                                                                                                        | Humidity                                | 34               | %RH    | ± 3 %RH         |  |
|                      |                                            |                                                                                                                        | Static Pressure                         | 101.2            | kPa    | ±1kPa           |  |
| Evaluation Method    |                                            | The data is aquired by the insert voltage<br>circuit sensitivity. Data reported in dB                                  | ge calibration method using the 20 µPa. | ne refere        | nce mi | crophone's open |  |
| Compliance Standards |                                            | Compliant to Manufacturer Specifications per D0001.8190 and the following standards:<br>IEC 60942:2017 ANSI S1.40-2006 |                                         |                  |        |                 |  |

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a \$ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

|                                            | Standards Used | 4          |              |
|--------------------------------------------|----------------|------------|--------------|
| Description                                | Cal Date       | Cal Due    | Cal Standard |
| Agilent 34401A DMM                         | 09/06/2018     | 09/06/2019 | 001021       |
| Larson Davis Model 2900 Real Time Analyzer | 04/10/2018     | 04/10/2019 | 001051       |
| Microphone Calibration System              | 03/07/2018     | 03/07/2019 | 005446       |
| 1/2* Preamplifier                          | 09/20/2018     | 09/20/2019 | 006506       |
| Larson Davis 1/2" Preamplifier 7-pin LEMO  | 08/07/2018     | 08/07/2019 | 006507       |
| 1/2 inch Microphone - RI - 200V            | 05/10/2018     | 05/10/2019 | 006510       |
| Pressure Transducer                        | 07/18/2018     | 07/18/2019 | 007368       |

Larson Davis, a division of PCB Piczotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001





10/29/2018 1-43-01PM



### 綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香 徳 黄 竹 坑 砲 3 7 號 利 達 中 心 1 2 樓 12F., Loader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong,

E-mail: smec@cigismec.com Website: www.cigismec.com Tel: (852) 2873 6860 Fax: (852) 2555 7533

24-Apr-2019



### CERTIFICATE OF CALIBRATION

| Certificate No.:        | 18CA1220 02         |                                                | Page:        | 1    | of        | 2   |
|-------------------------|---------------------|------------------------------------------------|--------------|------|-----------|-----|
| Item tested             |                     |                                                |              |      |           |     |
| Description:            | Acoustical Calib    | rator (Class 1)                                |              |      |           |     |
| Manufacturer:           | Larson Davis        | 8889 B. C. |              |      |           |     |
| Type/Model No.:         | CAL200              |                                                |              |      |           |     |
| Serial/Equipment No.:   | 13128               |                                                |              |      |           |     |
| Adaptors used:          | 00,225975-00<br>875 |                                                |              |      |           |     |
| Item submitted by       |                     |                                                |              |      |           |     |
| Curstomer:              | Lam Environme       | ntal Service Ltd.                              |              |      |           |     |
| Address of Customer:    |                     |                                                |              |      |           |     |
| Request No.:            |                     |                                                |              |      |           |     |
| Date of receipt:        | 20-Dec-2018         |                                                |              |      |           |     |
| Date of test:           | 28-Dec-2018         |                                                |              |      |           |     |
| Reference equipment     | used in the cal     | ibration                                       |              |      |           |     |
| Description:            | Model:              | Serial No.                                     | Expiry Date: | 13   | Traceable | to: |
| Lab standard microphone | B&K 4180            | 2412857                                        | 20-Apr-2019  |      | SCL       |     |
| Preamplifier            | B&K 2673            | 2239857                                        | 27-Apr-2019  |      | CEPREI    |     |
| Measuring amplifier     | B&K 2610            | 2346941                                        | 08-May-2019  |      | CEPREI    |     |
| Signal generator        | DS 360              | 33873                                          | 24-Apr-2019  | - 83 | CEPREI    |     |
| Digital multi-meter     | 34401A              | US36087050                                     | 23-Apr-2019  | - 19 | CEPREI    |     |
| Audio analyzer          | 80030               | CP41200250                                     | 23 Apr 2019  |      | CEDOEI    |     |

#### Ambient conditions

Universal counter

| Temperature:       | 20±1°C       |
|--------------------|--------------|
| Relative humidity: | 50 ± 10 %    |
| Air pressure:      | 1000 ± 5 hPa |

53132A

#### Test specifications

1. The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.

MY40003662

- 2. The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- З, The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference. pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

#### Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942, 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

at

Fend



Jungi

29-Dec-2018 Company Chop:



Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soits & Material's Engineering Coll Ltd.

Farm No. CARP106-54ssue 1/Rev. Dt01/03/2007

CEPREI



### 綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香 進 黄 竹 坑 道 3 7 號 利 達 中 心 1 2 樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533



### CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

18CA1220 02

2 Page:

#### Measured Sound Pressure Level 1.

The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

| Fr | Requency | Output Sound Pressure | Measured Output      | Estimated Expanded |
|----|----------|-----------------------|----------------------|--------------------|
|    | Shown    | Level Setting         | Sound Pressure Level | Uncertainty        |
|    | Hz       | dB                    | dB                   | dB                 |
|    | 1000     | 94.00                 | 93.84                | 0.10               |

#### 2, Sound Pressure Level Stability - Short Term Fluctuations

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

| At 1000 Hz | STF = 0.006 dB |
|------------|----------------|
|            |                |

Estimated expanded uncertainty

#### 3, Actual Output Frequency

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

0.005 dB

| At 1000 Hz                     | Actual Frequency = 999.4 Hz |                         |  |
|--------------------------------|-----------------------------|-------------------------|--|
| Estimated expanded uncertainty | 0.1 Hz                      | Coverage factor k = 2.2 |  |

#### 4, **Total Noise and Distortion**

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was

| At 1000 Hz                     | TND = 0.4% |
|--------------------------------|------------|
| Estimated expanded uncertainty | 0.7 %      |

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

|                | Λ                           | - End -     | 1                             |
|----------------|-----------------------------|-------------|-------------------------------|
| Calibrated by: | $1 - \chi$                  | Checked by: | Hall                          |
| Date:          | Fung Chi Yej<br>28-Dec-2018 | Date:       | Shek Kwong Tat<br>29-Dec-2018 |

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

ID Solis & Materials Engineering Co., Ltd.

Form No.CARP198-24soue 1/Rev.CI01/05/2005